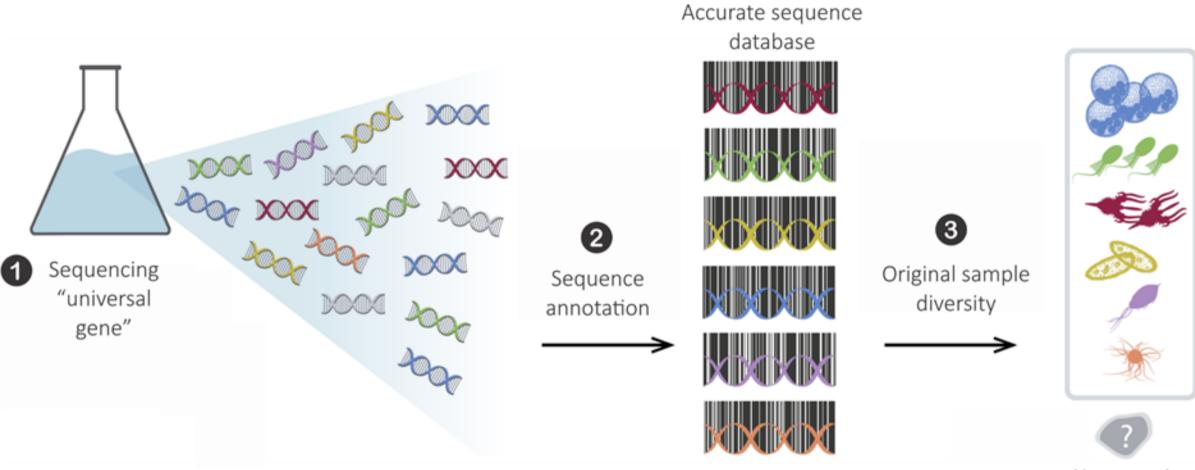

Microbes

Week 11 - Analyzing protist communities

MetaPR2

A database of metabarcodes

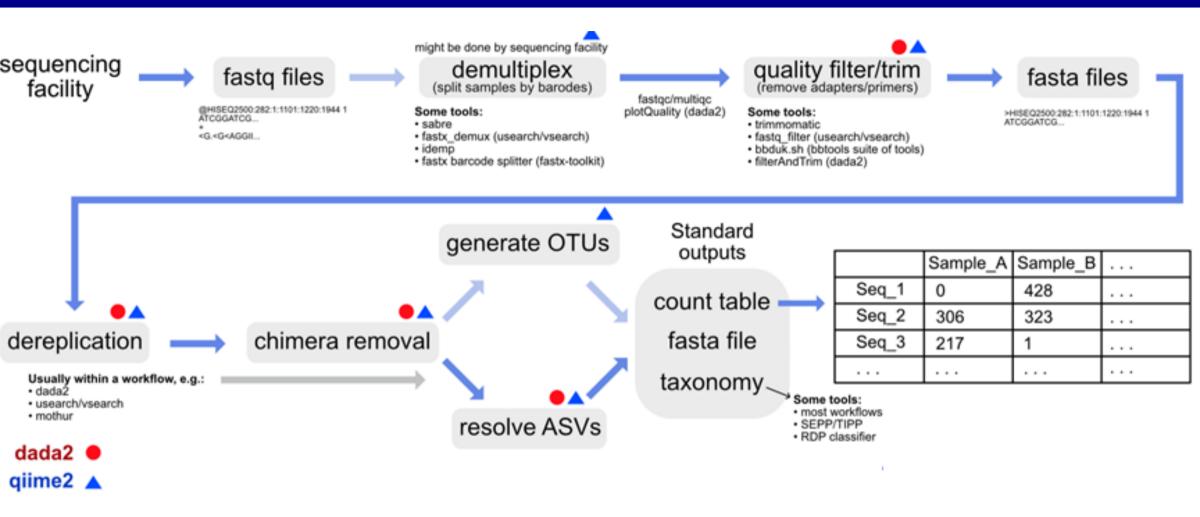
2022-10-24



meta

Outline

- Metabarcoding data
- Factors affecting protist communities
- Diversity
- Visualization/Analysis
- MetaPR2 in practice
- Final presentation


New species

Cluster

Assign

Sequences

Data tables

4	А	в	с	D	E	F	G	н
1	otu	Domain	Supergroup	Division	Class	Order	Family	Genus
2	Otu001	Eukaryota	Archaeplastida	Chlorophyta	Mamiellophyceae	Mamiellales	Bathycoccaceae	Ostreococcus
3	Otu002	Eukaryota	Hacrobia	Haptophyta	Prymnesiophyceae	Prymnesiophyceae_X	Braarudosphaeraceae	UCYN_A1_host
4	Otu003	Eukaryota	Archaeplastida	Chlorophyta	Mamiellophyceae	Mamiellales	Bathycoccaceae	Bathycoccus
5	Otu004	Eukaryota	Alveolata	Dinophyta	Dinophyceae	Dinophyceae_X	Dinophyceae_X	Prorocentrum
6	Otu005	Eukaryota	Stramenopiles	Ochrophyta	Bacillariophyta	Mediophyceae	Mediophyceae_X	Thalassiosira
7	Otu006	Eukaryota	Stramenopiles	Ochrophyta	Bacillariophyta	Bacillariophyceae	Bacillariophyceae_X	Pseudo_nitzschia
8	Otu007	Eukaryota	Stramenopiles	Ochrophyta	Pelagophyceae	Pelagophyceae_X	Pelagophyceae_X	Pelagomonas
9	Otu008	Eukaryota	Alveolata	Dinophyta	Dinophyceae	Dinophyceae_X	Dinophyceae_X	Dinophyceae_X
10	Otu009	Eukaryota	Hacrobia	Haptophyta	Prymnesiophyceae	Prymnesiales	Chrysochromulinaceae	Chrysochromulina
11	Otu010	Eukaryota	Opisthokonta	Metazoa	Craniata	Craniata_X	Craniata_XX	Craniata_XX_unclassified
12	Otu011	Eukaryota	Stramenopiles	Ochrophyta	Chrysophyceae	Chrysophyceae_X	Chrysophyceae_Clade_C	Chrysophyceae_Clade_C_X
13	Otu012	Eukaryota	Alveolata	Dinophyta	Dinophyceae	Dinophyceae_X	Dinophyceae_X	Gonyaulax
14	Otu013	Eukaryota	Alveolata	Dinophyta	Syndiniales	Syndiniales_Group_III	Syndiniales_Group_III_X	Syndiniales_Group_III_X
15	Otu014	Eukaryota	Stramenopiles	Ochrophyta	Chrysophyceae	Chrysophyceae_X	Chrysophyceae_Clade_G	Chrysophyceae_Clade_G_X
.6	Otu015	Eukaryota	Alveolata	Dinophyta	Dinophyceae	Dinophyceae_X	Dinophyceae_X	Dinophyceae_X
17	Otu016	Eukaryota	Hacrobia	Centroheliozoa	Centroheliozoa_X	Pterocystida	Pterocystida_X	Pterocystida_X
18	Otu017	Eukaryota	Opisthokonta	Fungi	Basidiomycota	Agaricomycotina	Agaricomycetes	Hyphodontia
9	Otu018	Eukaryota	Stramenopiles	Ochrophyta	Dictyochophyceae	Dictyochophyceae_X	Pedinellales	Pedinellales_X
20	Otu019	Eukaryota	Opisthokonta	Fungi	Basidiomycota	Agaricomycotina	Agaricomycetes	Itersonilia
21	Otu020	Eukaryota	Hacrobia	Haptophyta	Prymnesiophyceae	Prymnesiophyceae_X	Braarudosphaeraceae	Braarudosphaera
22	Otu021	Eukaryota	Alveolata	Dinophyta	Dinophyceae	Dinophyceae_X	Dinophyceae_X	Dinophyceae_X
23	Otu022	Eukaryota	Hacrobia	Haptophyta	Prymnesiophyceae	Prymnesiophyceae_X	Prymnesiophyceae_X	Syracosphaera
24	Otu023	Eukaryota	Stramenopiles	Ochrophyta	Bacillariophyta	Bacillariophyceae	Bacillariophyceae_X	Bacillariophyceae_X
25	Otu024	Eukaryota	Archaeplastida	Streptophyta	Klebsormidiophyceae	Klebsormidiophyceae_X	Klebsormidiophyceae_XX	Klebsormidium
26	Otu025	Eukaryota	Archaeplastida	Chlorophyta	Mamiellophyceae	Mamiellales	Mamiellaceae	Micromonas
27	Otu026	Eukaryota	Stramenopiles	Ochrophyta	Bacillariophyta	Bacillariophyceae	Bacillariophyceae_X	Cylindrotheca
28	Otu027	Eukaryota	Alveolata	Dinophyta	Dinophyceae	Suessiales	Suessiales_X	Karlodinium
29	Otu028	Eukaryota	Hacrobia	Haptophyta	Prymnesiophyceae	Isochrysidales	Noelaerhabdaceae	Emiliania
30	Otu029	Eukaryota	Opisthokonta	Fungi	Ascomycota	Saccharomycotina	Saccharomycetales	Debaryomyces
31	Otu030	Eukaryota	Hacrobia	Cryptophyta	Cryptophyceae	Cryptophyceae_X	Cryptomonadales	Teleaulax
32	Otu031	Eukaryota	Alveolata	Dinophyta	Syndiniales	Syndiniales_Group_I	Syndiniales_Group_I_Clade_1	Syndiniales_Group_I_Clade_1_X
33	Otu032	Eukaryota	Archaeplastida	Chlorophyta	Prasino_Clade_VII	Prasino_Clade_VII_X	Prasino_Clade_VII_A	Prasino_Clade_VII_A_4_X

Factors affecting protist communities

Substrate

- Water
- Ice
- Sediment
- Soil
- Microbiome

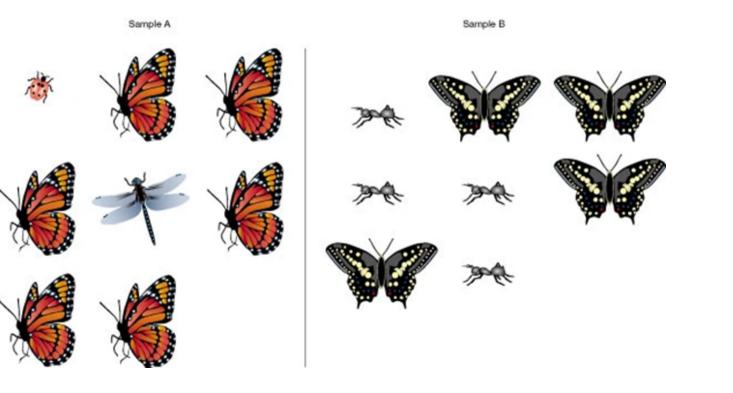
Ecosystem

- Oceanic
- Coastal
- Rivers
- Lakes
- Terrestrial

Size fraction

- Total (0.2 μm -> 100 μm)
- Pico (0.2 μm -> 2-3 μm)
- Nano (2-3 µm -> 20 µm)
- Micro (20 μm -> 100-200 μm)
- Meso (100 μm -> 1000 μm)

Environmental conditions


- In oceanic waters:
- temperature
- salinity
- light
- nutrients
- ... which depend on:
- substrate (water vs.ice)
- latitude
- time of the year
- depth
- oceanic currents
- proximity of coast

Microbial species in a sample

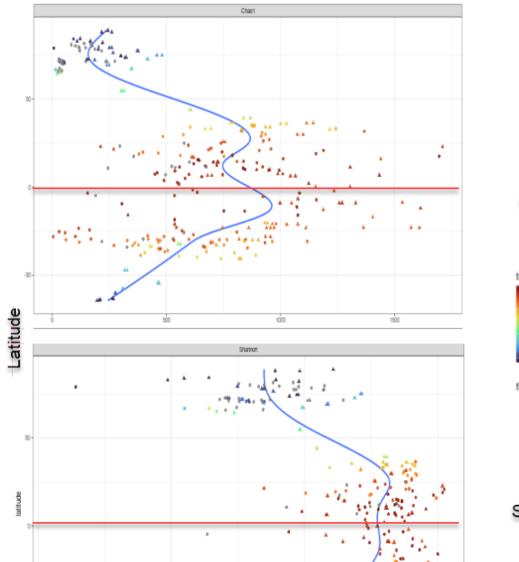
- **species richness**: total number of species
- **species abundance**: proportion of each species

Richness vs. Evenness

Alpha diversity - Diversity within a given sample

- Chao 1 is a non-parametric estimator of the number of species in a community.
- Shannon index¹

 $H = -\sum_{i=1}^{S} p_i \cdot \log p_i$


Where:

 p_i = fraction of the entire population made up of species i (proportion of a species i relative to total number of species present)

S = numbers of species encountered

A high value of H would be a representative of a diverse and equally distributed community and lower values represent less diverse community. A value of 0 would represent a community with just one species.

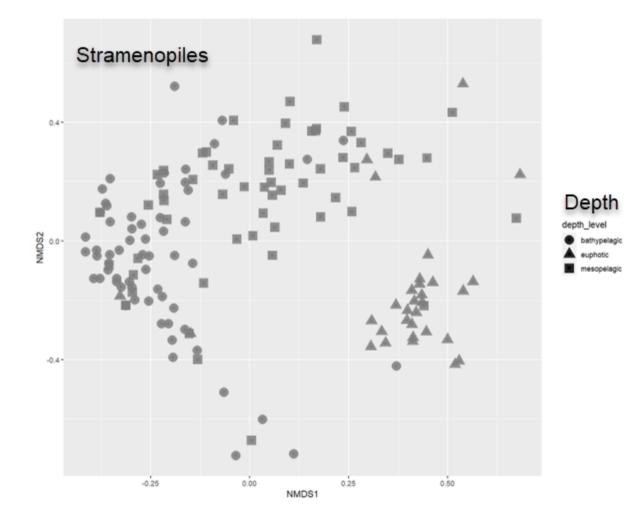
Alpha diversity - Effect of latitude

pico

▲ total

Shannon

Beta diversity - Compare diversity between samples


- Compute **distance** between samples:
 - Bray-Curtis dissimilarity: use abundance information
 - Varies between 0 and 1:
 - $\circ~$ 0 means the two samples have the same composition
 - $\circ~$ 1 means the two samples do not share any species

$$BC_{jk} = 1 - rac{2\sum_{i=1}^{p} min(N_{ij}, N_{ik})}{\sum_{i=1}^{p} (N_{ij} + N_{ik})}$$

where N_{ij} is the abundance of species i in sample j and p the total number of species

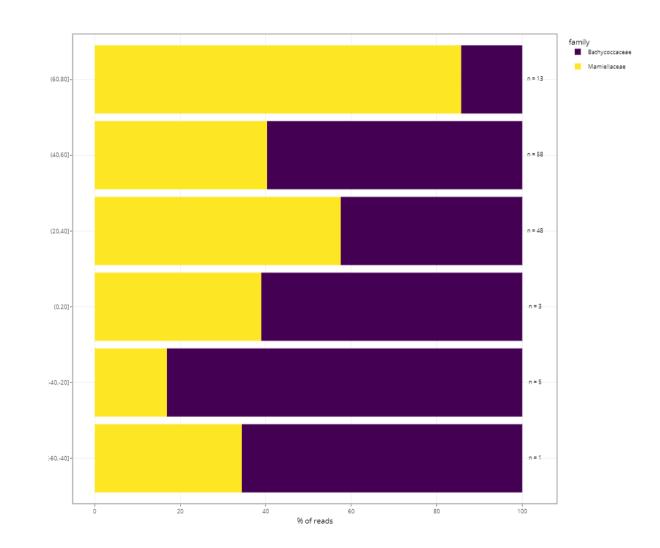
- Jaccard similarity index
 - Number of common species between samples divided by total number of species in the two samples $J(A,B) = rac{|A \cap B|}{|A \cup B|}$
- Ordinate the samples
 - NMDS: Non-Metric Multidimensional Scaling

Beta diversity - Effect of depth on Stramenopiles communities

MetaPR2 - Datasets

OSD Tara Oceans Malaspina Others (41 total)

MetaPR2 - Taxonomy


Eight levels:

- Kingdom: Eukaryota
- Supergroup: Archaeplastida
- Division: Chlorophyta
- Class: Mamiellophyceae
- Order: Mamielliales
- Family: Bathycoccaceae
- Genus: *Bathycococcus*
- Species: *B. prasinos*

Reads		ASVs		
Bathycoccaceae Bathycoccus		Mamiell	aceae RCC391	Bathycoccaceae Bathycoccus
		Mamiella	Mantoniella	
Ostreococcus	Micromonas	Mici	romonas	Ostreococcus

MetaPR2 - Visualization

Barplots Maps - Dominant Maps - Pie charts Diversity

Help

• Read in detail

Sample table

- dataset_name
- paper (can be useful to read)
- number of samples
- number of ASVs
- number of reads per sample (coverage)

Sample selection

- Major datasets: OSD, Tara, Malaspina
- By habitat: oceanic, coastal etc...
 - Start by "marine global V4"
 - Extend to other habitats/datasets
- V4 vs V9
- DNA vs. RNA
- Ecosystems
- Sustrate: water, ice, soil...
- Size fractions: total, pico...
- Depth level: surface, euphotic...
- Minimum ASV: will filter out rare ASVs (e.g. 1000)
- Selection can be saved (yaml file)

Taxonomy

- Can select several taxa within one level
- Press validate every time you need to refresh
- Can exclude taxa to remove fungi, metazoa...
- Can save taxonomy and reload taxonomy (yaml file)

Validate Taxa	Reset Taxa
Press VALIDATE screen.	after changing taxonomy to update
Press RESET + V	ALIDATE to reset taxonomy to top
Supergroup	
Archaeplastida	
Division	
Chlorophyta	
Class	
Mamiellophycea	ae
Order	
Mamiellales	
Family	
Mamiellaceae	
Genus	
All	
Micromonas	
Mantoniella	
Mamiella	
RCC391	
Exclude Ta	axa
None	
Save/Load	laxa

Treemaps

- Left panel: abundance (number of reads)
 - Reads are "normalized" to 100
- Right panel: diversity (number of ASVs)

Maps

- Read information at top
 - Taxo level
 - Number of samples with/without taxa
- Crosses where taxa absent
- Map types
 - Dominant
 - Pie chart
- Circle scale
 - Moving right increases size

Barplots

- taxonomy vs. function
- variables to use (but this depends on samples selected !)
 - fraction name
 - ecosystem
 - substrate
 - depth level
 - DNA_RNA
 - Iatitude
 - temperature
 - salinity
 - year, month, day for time series

Diversity

- Hit "Compute..." after refreshing taxonomy
- Time proportional to N samples and taxa
- Information about
 - Number of samples
 - Number of taxa (ASVs)

Alpha diversity

- X: Chao1, Shannon, Simpson (compare)
- Discretize continuous Y
- Change Y (see barplots)
- Change shape
- Change color

Beta diversity

- Ordination method (difference ?)
- Ordination distance (Bray, Jaccard...)
- Change color and shape

Download

- Download
 - datasets
 - samples
 - asv list with taxonomy
 - asv sequences

Only for those with extensive experience with data processing.

Taxonomic groups

- Green algae
- Prasinoderma
- Ostreococcus
- Ochrophyta (Stramenopiles)
- Pelagomonas, Aureococcus
- Florenciella
- Pinguiophyceae

Taxonomic groups

- Diatoms
- Pseudo-nitzschia
- Fragiliaropsis
- Minidiscus
- Rhizosolenia
- Dinoflagellates
- Dinophysis
- Ceratium, Tripos

Key points

- Look for key papers on this group
- What are the dominant species?
- What is the microdiversity [diversity within dominant species (ASVs)]?
- What is distribution ?
 - Substrate (water, ice...)
 - Ecosystems (marine, freshwater, terrestrial)
 - Size fraction
 - Depth layers (euphotic zone vs. meso and bathypelagic)
 - Latitudinal bands (polar, temperate, tropical)
 - Coastal vs Pelagic
- Alpha diversity
- Beta diversity

In practice

- Each group will have **max of 15'** to present their results. Your time will be cut after 15'.
- Don't overload your presentation and run when talking. This will decrease the clarity of your presentation.
- Share equally time between group members.
- Introduce very briefly the main biological characteristics and ecological importance of your taxonomic group.
- Explain which **hypotheses/questions** your group were interested in.
- Explain the results you have observed. Focus on main points.
- Each group will have **5' to answer questions**.

Evaluation

- Profs, TAs and PhD's students will be judging your presentation (Only Profs will grade!):
 - Grade scale: 0 = unacceptable; 1 = poor; 2 = fair; 3 = good; 4 = outstanding

Criteria

- Quality of presentation
 - Slides (font size, amount on slide, legible and clear, references, no errors, etc).
 - Organization of presentation (outline, logical sequence, good transitions, easy to follow, etc).
 - Quality of oral presentation (well paced, projected voice, face audience, eye contact, confident, etc).
 - Did the group keep the audience interested? (show enthusiasm, command attention, did you learn something new?)
 - Was the presentation within the 15 minutes in length?
- Content of presentation
 - Was the presentation well structured ?
 - Did the group show an overall understanding of the topic? (background, objectives and significance thoroughly explained?).
 - Did the presentation cited the relevant material from the litterature?
 - Did the group answered questions accurately? Did the group possess good understanding of topic based on answers?