+ - 0:00:00
Notes for current slide
Notes for next slide

Current Issues in Ecology





Scales in marine plankton ecology

Daniel Vaulot

Course coordinator: David Wardle

2021-03-18

1 / 89

Outline

  • The marine Environment
  • Marine Phytoplankton
  • Spatial Scales
  • Temporal Scales
  • Time Series
2 / 89

The Marine Environment

3 / 89

The Marine Environment

Temperature

4 / 89

The Marine Environment

Marine Environment is highly dynamic

What factors drive oceanic circulation?

5 / 89

The Marine Environment

Currents

  • Wind (Atmospheric Circulation)
  • Earth rotation (Coriolis effect)
  • Water density (Temperature, Salinity)
  • Continents
  • Turbulence

https://www.arcgis.com/apps/MapJournal/index.html?appid=d629dd5cc3fe48ea9fc744dada861da0

6 / 89

The Marine Environment

Currents

  • Wind (Atmospheric Circulation)
  • Earth rotation (Coriolis effect)
  • Water density (Temperature, Salinity)
  • Continents
  • Turbulence

https://www.arcgis.com/apps/MapJournal/index.html?appid=d629dd5cc3fe48ea9fc744dada861da0

7 / 89

The Marine Environment

Currents

  • Wind (Atmospheric Circulation)
  • Earth rotation (Coriolis effect)
  • Water density (Temperature, Salinity)
  • Continents
  • Turbulence https://svs.gsfc.nasa.gov/3827
8 / 89

The Marine Environment

Currents


9 / 89

Marine Plankton

10 / 89

Marine Plankton

Classical view of marine foodwebs

Waht is the definition of plankton ?

11 / 89

Marine Plankton

Classical view of marine foodwebs

Waht is the definition of plankton ?

What are the different types of plankton ?

11 / 89

Marine Plankton

Plankton diversity

  • Phytoplankton
  • Zooplankton
12 / 89

Marine Plankton

Plankton diversity

  • Phytoplankton
  • Zooplankton
  • Bacteria
  • Viruses
12 / 89

Marine Plankton

Size classes

13 / 89

Marine Plankton

Complex processes

  • Predation
  • Symbiosis
  • Mixotrophy
  • Parasitism
14 / 89

Marine Plankton

Phytoplankton

Can you name phytoplankton groups ?

15 / 89

Marine Plankton

Major groups

16 / 89

Marine Plankton

Diatoms and dinoflagellates: 20-200 µm

17 / 89

Marine Plankton

Picoplankton: 0.2-2 µm

  • Very small eukaryotes (Ostreococcus)
  • Cyanobacteria (Synechococcus)
18 / 89

Marine Plankton

Wide phylogenetic diversity

Not, F., Siano, R., Kooistra, W.H.C.F., Simon, N., Vaulot, D. & Probert, I. 2012. In Piganeau, G. [Ed.] Genomic Insights Gained into the Diversity, Biology and Evolution of Microbial Photosynthetic Eukaryotes. Elsevier.

19 / 89

Spatial scales

20 / 89

Spatial scales

Chlorophyll

Proxy of phytoplankton biomass

21 / 89

Spatial scales

Chlorophyll

Can be measured from space

22 / 89

Spatial scales

Chlorophyll

What can you see ?

23 / 89

Spatial scales

Blooms

English Channel

Coccolithophorids

24 / 89

Spatial scales

Blooms

New Zealand

25 / 89

Spatial scales

Blooms

Baltic

Cyanobacteria

26 / 89

Spatial scales

What factors control phytoplankton ?

27 / 89

Spatial scales

What controls phytoplankton ?

Positive

  • Light
  • Nutrients (Nitrogen, Phosphorus)
  • Trace elements (Iron)

Negative

  • Predation
  • Parasites (e.g. viruses)
  • Death

Species selection

  • Temperature
  • Salinity
28 / 89

Spatial scales

Is phytoplankton uniformly distributed in the water column?

29 / 89

Spatial scales

Water column

30 / 89

Spatial scales

Euphotic layer

31 / 89

Spatial scales

Chlorophyll maximum

32 / 89

Spatial scales

Sampling the ocean

  • Bucket sampling
33 / 89

Spatial scales

Sampling the ocean

  • Bottles on a Rosette
  • CTD - Conducitivity, Temperature, Depth
34 / 89

Spatial scales

Sampling the ocean

  • Filtration
35 / 89

Spatial scales

Sampling the ocean

  • Nets
36 / 89

Spatial scales

Sampling the ocean

  • Eulerian
37 / 89

Spatial scales

Sampling the ocean

  • Eulerian

  • Lagrangian

37 / 89

Spatial scales

Sampling the ocean

  • Transects (Eulerian)
38 / 89

Spatial scales

Sampling the ocean

  • Grids (Eulerian)

https://calcofi.org/index.php

39 / 89

Spatial scales

Sampling the ocean

  • Drifting buoy (Lagrangian)

Lizotte et al.(2008) Fate of dimethylsulfoniopropionate (DMSP) during the decline of the northwest Atlantic Ocean spring diatom bloom. Aquat Microb Ecol 52:159-173

40 / 89

Temporal scales

41 / 89

Temporal scales

What are the most important scales in the ocean?

42 / 89

Temporal scales

Temporal variations


Bloom populations in the North Atlantic and North Pacific oceans from March 2003 to October 2006: https://svs.gsfc.nasa.gov/10971

43 / 89

Temporal scales

Annual scale - Spring bloom

  • Diatoms
  • Dinoflagellates

Lindemann C and St. John MA (2014) A seasonal diary of phytoplankton in the North Atlantic. Front. Mar. Sci. 1:37

44 / 89

Temporal scales

Annual scale - Spring bloom

  • Depends on latitude
    • Temperate
    • Tropical
    • Arctic
45 / 89

Temporal scales

Multi-year scale - El Niño

Warm water accumulates over East Pacific

46 / 89

Temporal scales

Multi-year scale - El Niño

  • Blocks upwelling
  • Phytoplankton decrease
  • Lower fish capture (anchovy)
47 / 89

Temporal scales

Multi-year scale - El Niño

  • Year to year change in intensity
48 / 89

Temporal scales

Climatic change

  • ALOHA station
49 / 89

Temporal scales

Climatic change

  • ALOHA station
50 / 89

Temporal scales

Monthly scale

  • Neap tide
  • Spring tide
51 / 89

Temporal scales

Daily scale

Unique to marine systems

Vaulot D., Marie D. 1999. Diel variability of photosynthetic picoplankton in the equatorial Pacific. Journal of Geophysical Research 104:3297.

52 / 89

Temporal scales

Spatial and temporal scales

Benway HM. et al. 2019. Ocean Time Series Observations of Changing Marine Ecosystems: An Era of Integration, Synthesis, and Societal Applications. Frontiers in Marine Science 6:1–22.

53 / 89

Time series

54 / 89

Time series

Long term stations

Bunse C., Pinhassi J. 2017. Marine Bacterioplankton Seasonal Succession Dynamics. Trends in Microbiology 25:494–505.

55 / 89

Time series

What kind of questions can be adressed by such long term series?

56 / 89

Time series

  • What are the key periodicities ?
    • annual (what about equator ?)
    • tides (monthly)
    • daily
  • Long term climatic trends
  • What drives the year to year variability
  • Recurring species ?
57 / 89

Time series

Chlorophyll time series

  • North Atlantic Chl-a time series (57–628 N, 20–108 W) from 1967 to 1979
  • Wavelet anlysis

Winder M., Cloern JE. 2010. The annual cycles of phytoplankton biomass. Philosophical Transactions of the Royal Society B: Biological Sciences 365:3215–3226.

58 / 89

Time series

Chlorophyll time series

What can you see ?

Winder M., Cloern JE. 2010. The annual cycles of phytoplankton biomass. Philosophical Transactions of the Royal Society B: Biological Sciences 365:3215–3226.

59 / 89

Time series

Chlorophyll time series

  • Different environments have different frequencies

Winder M., Cloern JE. 2010. The annual cycles of phytoplankton biomass. Philosophical Transactions of the Royal Society B: Biological Sciences 365:3215–3226.

60 / 89

What drives the Synechoccus bloom ?

61 / 89

What drives the Synechoccus bloom ?

Flow Cytobot

  • Imaging and flow cytometry
62 / 89

What drives the Synechoccus bloom ?

Flow Cytobot

  • Diatoms
63 / 89

What drives the Synechoccus bloom ?

Synechococcus

  • Discovered in 1979 by John Waterbury - Epifluorescence microscopy

Waterbury, J.B., Watson, S.W., Guillard, R.R.L. & Brand, L.E. 1979. Nature. 277:293–4.
64 / 89

What drives the Synechoccus bloom ?

Cell multiplication

  • Binary fission
  • Typically once every day
65 / 89

What drives the Synechoccus bloom ?

Cell disappearance

  • Virus
  • Predation
  • Cell death (UV, nutrient deprivation)
66 / 89

What drives the Synechoccus bloom ?

Growth rate vs Loss rate



\(\dfrac{\mathrm{d}N}{\mathrm{d}t}=\mu_{net}*N\)

\(N = N_{0}\exp^{\mu_{net}*t}\)

\(\mu_{net} = \mu_{growth} - \mu_{loss}\)

  • Growth rate = division

  • Loss rate = cell death, predation, viruses

67 / 89

What drives the Synechoccus bloom ?

Growth rate vs Loss rate



\(\dfrac{\mathrm{d}N}{\mathrm{d}t}=\mu_{net}*N\)

\(N = N_{0}\exp^{\mu_{net}*t}\)

\(\mu_{net} = \mu_{growth} - \mu_{loss}\)

  • Growth rate = division

  • Loss rate = cell death, predation, viruses

67 / 89

What drives the Synechoccus bloom ?

Growth rate vs Loss rate



\(\dfrac{\mathrm{d}N}{\mathrm{d}t}=\mu_{net}*N\)

\(N = N_{0}\exp^{\mu_{net}*t}\)

\(\mu_{net} = \mu_{growth} - \mu_{loss}\)

  • Growth rate = division

  • Loss rate = cell death, predation, viruses

68 / 89

What drives the Synechoccus bloom ?

Synechococcus abundance

Hunter-Cevera et al. 2016. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 354:326–329.

69 / 89

What drives the Synechoccus bloom ?

Synechococcus abundance

Hunter-Cevera et al. 2016. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 354:326–329.

70 / 89

What drives the Synechoccus bloom ?

Temperature

Hunter-Cevera et al. 2016. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 354:326–329.

71 / 89

What drives the Synechoccus bloom ?

Temperature anomaly

Hunter-Cevera et al. 2016. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 354:326–329.

72 / 89

What drives the Synechoccus bloom ?

Synechococcus vs. Temperature

Hunter-Cevera et al. 2016. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 354:326–329.

73 / 89

What drives the Synechoccus bloom ?

Loss vs. Division rate

Hunter-Cevera et al. 2016. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 354:326–329.

74 / 89

Which groups/species exhibit periodic recurrence ?

75 / 89

Which groups/species exhibit periodic recurrence ?

Study in the Mediterranean Sea

  • 2014-2013

Giner et al. 2019. Quantifying long-term recurrence in planktonic microbial eukaryotes. 28:923-935. Molecular Ecology

76 / 89

Which groups/species exhibit periodic recurrence ?

Yearly cycles

Giner et al. 2019. Quantifying long-term recurrence in planktonic microbial eukaryotes. 28:923-935. Molecular Ecology

77 / 89

Which groups/species exhibit periodic recurrence ?

Metabarcoding

78 / 89

Which groups/species exhibit periodic recurrence ?

Metabarcoding

Mahé et al.. 2017. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nature Ecology & Evolution 1:0091.

79 / 89

Which groups/species exhibit periodic recurrence ?

Metabarcoding

80 / 89

Which groups/species exhibit periodic recurrence ?

How to determine periodicity ?

81 / 89

Which groups/species exhibit periodic recurrence ?

How to determine periodicity ?

  • Autocorrelation
82 / 89

Which groups/species exhibit periodic recurrence ?

How to determine periodicity ?

  • Autocorrelation
83 / 89

Which groups/species exhibit periodic recurrence ?

How to determine periodicity ?

  • Autocorrelation
84 / 89

Which groups/species exhibit periodic recurrence ?

Group periodicity

  • Autocorrelation function

Giner et al. 2019. Quantifying long-term recurrence in planktonic microbial eukaryotes. 28:923-935. Molecular Ecology

85 / 89

Which groups/species exhibit periodic recurrence ?

Group periodicity

Giner et al. 2019. Quantifying long-term recurrence in planktonic microbial eukaryotes. 28:923-935. Molecular Ecology

86 / 89

Which groups/species exhibit periodic recurrence ?

Species periodicity

Giner et al. 2019. Quantifying long-term recurrence in planktonic microbial eukaryotes. 28:923-935. Molecular Ecology

87 / 89

Which groups/species exhibit periodic recurrence ?

Species periodicity

Giner et al. 2019. Quantifying long-term recurrence in planktonic microbial eukaryotes. 28:923-935. Molecular Ecology

88 / 89

What did we talked about ?

  • Spatial scales
  • Time scales
  • Sampling the Ocean
  • Time series
    • Chlorophyll periodicity
    • Bloom dynamics
    • Which species are periodic ?
89 / 89

Outline

  • The marine Environment
  • Marine Phytoplankton
  • Spatial Scales
  • Temporal Scales
  • Time Series
2 / 89
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow