R course

Daniel Vaulot

2023-01-19

Data wrangling

R - Session 02

  • Data frames
  • Concept of tidy data
  • Reading data
  • Manipulating data
  • Columns
  • Rows

Data frames

R objects

  • List

  • Matrix

  • Factors

  • Data frames

Data frames

What is it ?

  • Table mixing different types of columns (an Excel table…)
  • However within a column all values are similar, e.g. numeric, logical, character
  df <- data.frame(label = letters[1:6], 
                   id = 1:6, 
                   value = rnorm(6, mean = 0, sd = 1), 
                   flag=c(TRUE, FALSE),                   # recycling rule
                   stringsAsFactors = FALSE)
  df
  label id       value  flag
1     a  1  0.03963652  TRUE
2     b  2 -1.03193245 FALSE
3     c  3 -0.46903884  TRUE
4     d  4 -1.36385849 FALSE
5     e  5  0.71374085  TRUE
6     f  6  0.48473275 FALSE

* We will NOT use factors: stringsAsFactors = FALSE (default in R > 4.0)

Useful functions

dim(df)   # returns the dimensions of data frame
nrow(df)  # number of rows
ncol(df)  # number of columns
[1] 6 4
[1] 6
[1] 4
str(df)   # structure of data frame - name, type and preview of data in each column
colnames(df) # columns names
'data.frame':   6 obs. of  4 variables:
 $ label: chr  "a" "b" "c" "d" ...
 $ id   : int  1 2 3 4 5 6
 $ value: num  0.0396 -1.0319 -0.469 -1.3639 0.7137 ...
 $ flag : logi  TRUE FALSE TRUE FALSE TRUE FALSE
[1] "label" "id"    "value" "flag" 

Access specific value

  • Use the df[i,j] notation, first index corresponds to row, second index to column
  df[5,3]
[1] 0.7137409
  • Specify the name of the column ::: {.cell output-location=‘fragment’}
  df[5,"value"]
[1] 0.7137409

::: The result is a vector

Access specific column

  • Use the df[i,j] notation ::: {.cell output-location=‘fragment’}
  df[,3]
  df[,"value"]
[1]  0.03963652 -1.03193245 -0.46903884 -1.36385849  0.71374085  0.48473275
[1]  0.03963652 -1.03193245 -0.46903884 -1.36385849  0.71374085  0.48473275

::: The result is a vector

  • Use $notation
  df$value
[1]  0.03963652 -1.03193245 -0.46903884 -1.36385849  0.71374085  0.48473275
  • This can be used to access a specific value

  • $ for the column, [i] for the row

  df$value[5]
[1] 0.7137409

Access row

  • Use the df[i,j] notation ::: {.cell output-location=‘fragment’}
  df[1,]
  label id      value flag
1     a  1 0.03963652 TRUE

:::

The result is a data frame

Access specific rows

  • e.g. Rows for which the value of id <= 3
   df[df$id <= 3,]
  label id       value  flag
1     a  1  0.03963652  TRUE
2     b  2 -1.03193245 FALSE
3     c  3 -0.46903884  TRUE

Select lines for which the label is c

   df[df$label ==  "c",]
  label id      value flag
3     c  3 -0.4690388 TRUE

This syntax is complicated - tidyverse packages make it much more easy to manipulate and remember

Tidy data

Installation and Resources

Packages

  • readxl : Reading Excel files
  • readr : Reading and writing Text files
  • dplyr : Filter and reformat data frames
  • tidyr : Make data “tidy”
  • stringr : Manipulating strings
  • lubridate : Manipulate date

Data and script

  • unzip data.zip
  • Open in R scripts/script_wrangling.R

Resources

Basic concepts

  1. Each variable must have its own column.
  2. Each observation must have its own row.
  3. Each value must have its own cell.

Load necessary libraries

library("readxl") # Import the data from Excel file
library("readr")  # Import the data from Excel file

library("dplyr")  # filter and reformat data frames
library("tidyr")  # make data tidy

library("stringr") # manipulate strings
library("lubridate") # manipulate date 

library("ggplot2") # graphics

Read and Write data

Oceanographic data

CARBOM cruise off Brazil

  • Stations
  • Depth
  • Coordinates
  • Temperature, Salinity
  • Nitrates, Phosphates

Microbial populations

  • Flow cytometry :
    • pico-eukaryotes
    • nano-eukaryotes

Read data

Text file - TAB delimited

Reading a text file

  samples <- readr::read_tsv("data/CARBOM data.txt")
sample number transect station date time depth level latitude longitude picoeuks nanoeuks phosphates nitrates temperature salinity
10 1 81 13/11/2013 01:00:00 140 Deep -27.42 -44.72 3278 1232 0.20 0.26 17.3 35.9
11 1 85 13/11/2013 13:30:00 110 Deep -26.80 -45.30 16312 1615 0.29 0.22 21.3 36.5
120 2 96 18/11/2013 23:50:00 5 Surf -27.39 -47.82 1150 75 0.43 0.19 23.1 33.5
121 2 18/11/2013 23:50:00 30 Deep -27.39 -47.82 1737 218 0.43 0.23 22.6 33.7
122 2 18/11/2013 23:50:00 50 Deep -27.39 -47.82 853 234 0.56 0.21 20.3 35.9
125 2 98 18/11/2013 05:00:00 5 Surf -27.59 -47.39 3086 1300 0.29 0.25 23.1 35.7
126 2 18/11/2013 05:00:00 50 Deep -27.59 -47.39 1217 782 0.25 0.20 23.7 37.2
127 2 18/11/2013 05:00:00 85 Deep -27.59 -47.39 3420 226 0.25 0.47 22.9 37.0
13 1 86 13/11/2013 17:00:00 105 Deep -26.33 -45.41 6366 1007 0.34 0.15 20.9 36.3
140 2 101 18/11/2013 12:00:00 5 Surf -27.79 -46.96 500 366 0.29 0.14 23.5 36.5
  • readr::read_tsv() : read tab delimited files

  • readr::read_csv() : read comma delimited files

  • readr::write_tsv() : write tab delimited files

Excel sheet

Read the data - read_excel

  samples <- readxl::read_excel("data/CARBOM data.xlsx", 
                           sheet = "Samples_boat")
sample number transect station date time depth level latitude longitude picoeuks nanoeuks phosphates nitrates temperature salinity
10 1 81 2013-11-13 1899-12-31 01:00:00 140 Deep -27.42 -44.72 3278 1232 0.20 0.26 17.3 35.9
11 1 85 2013-11-13 1899-12-31 13:30:00 110 Deep -26.80 -45.30 16312 1615 0.29 0.22 21.3 36.5
120 2 96 2013-11-18 1899-12-31 23:50:00 5 Surf -27.39 -47.82 1150 75 0.43 0.19 23.1 33.5
121 2 2013-11-18 1899-12-31 23:50:00 30 Deep -27.39 -47.82 1737 218 0.43 0.23 22.6 33.7
122 2 2013-11-18 1899-12-31 23:50:00 50 Deep -27.39 -47.82 853 234 0.56 0.21 20.3 35.9
125 2 98 2013-11-18 1899-12-31 05:00:00 5 Surf -27.59 -47.39 3086 1300 0.29 0.25 23.1 35.7
126 2 2013-11-18 1899-12-31 05:00:00 50 Deep -27.59 -47.39 1217 782 0.25 0.20 23.7 37.2
127 2 2013-11-18 1899-12-31 05:00:00 85 Deep -27.59 -47.39 3420 226 0.25 0.47 22.9 37.0
13 1 86 2013-11-13 1899-12-31 17:00:00 105 Deep -26.33 -45.41 6366 1007 0.34 0.15 20.9 36.3
140 2 101 2013-11-18 1899-12-31 12:00:00 5 Surf -27.79 -46.96 500 366 0.29 0.14 23.5 36.5
  • Can also select a range : e.g. A1:Q26
  • Can skip lines

Bad data input under Excel


sample number transect station date time depth level latitude longitude picoeuks nanoeuks phosphates nitrates temperature salinity
10 1 81 2013-11-13 1899-12-31 01:00:00 140 Deep -27.42 -44.72 3278 1232 0.20 0.26 17.3 35.9
11 1 85 2013-11-13 1899-12-31 13:30:00 110 Deep -26.80 -45.30 16312 1615 0.29 0.22 21.3 36.5
120 2 96 2013-11-18 1899-12-31 23:50:00 5 Surf -27.39 -47.82 1150 75 0.43 0.19 23.1 33.5
121 2 2013-11-18 1899-12-31 23:50:00 30 Deep -27.39 -47.82 1737 218 0.43 0.23 22.6 33.7
122 2 2013-11-18 1899-12-31 23:50:00 50 Deep -27.39 -47.82 853 234 0.56 0.21 20.3 35.9
125 2 98 2013-11-18 1899-12-31 05:00:00 5 Surf -27.59 -47.39 3086 1300 0.29 0.25 23.1 35.7
126 2 2013-11-18 1899-12-31 05:00:00 50 Deep -27.59 -47.39 1217 782 0.25 0.20 23.7 37.2
127 2 2013-11-18 1899-12-31 05:00:00 85 Deep -27.59 -47.39 3420 226 0.25 0.47 22.9 37.0
13 1 86 2013-11-13 1899-12-31 17:00:00 105 Deep -26.33 -45.41 6366 1007 0.34 0.15 20.9 36.3
140 2 101 2013-11-18 1899-12-31 12:00:00 5 Surf -27.79 -46.96 500 366 0.29 0.14 23.5 36.5
  • There are missing values in the column station because only recorded when changed

Filling missing values - fill

  samples <- tidyr::fill(samples, station)
sample number transect station date time depth level latitude longitude picoeuks nanoeuks phosphates nitrates temperature salinity
10 1 81 2013-11-13 1899-12-31 01:00:00 140 Deep -27.42 -44.72 3278 1232 0.20 0.26 17.3 35.9
11 1 85 2013-11-13 1899-12-31 13:30:00 110 Deep -26.80 -45.30 16312 1615 0.29 0.22 21.3 36.5
120 2 96 2013-11-18 1899-12-31 23:50:00 5 Surf -27.39 -47.82 1150 75 0.43 0.19 23.1 33.5
121 2 96 2013-11-18 1899-12-31 23:50:00 30 Deep -27.39 -47.82 1737 218 0.43 0.23 22.6 33.7
122 2 96 2013-11-18 1899-12-31 23:50:00 50 Deep -27.39 -47.82 853 234 0.56 0.21 20.3 35.9
125 2 98 2013-11-18 1899-12-31 05:00:00 5 Surf -27.59 -47.39 3086 1300 0.29 0.25 23.1 35.7
126 2 98 2013-11-18 1899-12-31 05:00:00 50 Deep -27.59 -47.39 1217 782 0.25 0.20 23.7 37.2
127 2 98 2013-11-18 1899-12-31 05:00:00 85 Deep -27.59 -47.39 3420 226 0.25 0.47 22.9 37.0
13 1 86 2013-11-13 1899-12-31 17:00:00 105 Deep -26.33 -45.41 6366 1007 0.34 0.15 20.9 36.3
140 2 101 2013-11-18 1899-12-31 12:00:00 5 Surf -27.79 -46.96 500 366 0.29 0.14 23.5 36.5
  • All missing values have been filled in.

Write data

Text file

  • readr::write_tsv() : write tab delimited files
  readr::write_tsv(samples, "data/CARBOM data fixed.tsv")

Excel file

  • openxlsx::write.xlsx : write tab delimited files

  • Many options: specific sheet, formatting etc…

  openxlsx::write.xlsx(samples, "data/CARBOM data fixed.xlsx")

Write data

Library rio

  • Many output formats
  • import() / export()

dplyr - Manipulate tables

@allison_horst

Manipulate columns

List and Summarize columns

List columns

  colnames(samples)
 [1] "sample number" "transect"      "station"       "date"         
 [5] "time"          "depth"         "level"         "latitude"     
 [9] "longitude"     "picoeuks"      "nanoeuks"      "phosphates"   
[13] "nitrates"      "temperature"   "salinity"     

Summarize columns

  summary(samples$depth)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
    5.0     5.0    50.0    56.6   100.0   140.0       3 

Select specific columns - select

samples_select <- dplyr::select(samples, transect, `sample number`,
                                 station, depth, latitude, longitude, 
                                 picoeuks, nanoeuks)
transect sample number station depth latitude longitude picoeuks nanoeuks
1 10 81 140 -27.42 -44.72 3278 1232
1 11 85 110 -26.80 -45.30 16312 1615
2 120 96 5 -27.39 -47.82 1150 75
2 121 96 30 -27.39 -47.82 1737 218
2 122 96 50 -27.39 -47.82 853 234
2 125 98 5 -27.59 -47.39 3086 1300
2 126 98 50 -27.59 -47.39 1217 782
2 127 98 85 -27.59 -47.39 3420 226
1 13 86 105 -26.33 -45.41 6366 1007
2 140 101 5 -27.79 -46.96 500 366

* Column names are not “quoted” (in base R you need to “quote” the column names)

* Better not to put space in column header because then must enclose column name with ` (back-quote)

Select a range of columns - select

  samples_select <- dplyr::select(samples, transect:nanoeuks)
transect station date time depth level latitude longitude picoeuks nanoeuks
1 81 2013-11-13 1899-12-31 01:00:00 140 Deep -27.42 -44.72 3278 1232
1 85 2013-11-13 1899-12-31 13:30:00 110 Deep -26.80 -45.30 16312 1615
2 96 2013-11-18 1899-12-31 23:50:00 5 Surf -27.39 -47.82 1150 75
2 96 2013-11-18 1899-12-31 23:50:00 30 Deep -27.39 -47.82 1737 218
2 96 2013-11-18 1899-12-31 23:50:00 50 Deep -27.39 -47.82 853 234
2 98 2013-11-18 1899-12-31 05:00:00 5 Surf -27.59 -47.39 3086 1300
2 98 2013-11-18 1899-12-31 05:00:00 50 Deep -27.59 -47.39 1217 782
2 98 2013-11-18 1899-12-31 05:00:00 85 Deep -27.59 -47.39 3420 226
1 86 2013-11-13 1899-12-31 17:00:00 105 Deep -26.33 -45.41 6366 1007
2 101 2013-11-18 1899-12-31 12:00:00 5 Surf -27.79 -46.96 500 366

Unselect columns - select

  samples_select <- dplyr::select (samples, -nitrates, -phosphates)
sample number transect station date time depth level latitude longitude picoeuks nanoeuks temperature salinity
10 1 81 2013-11-13 1899-12-31 01:00:00 140 Deep -27.42 -44.72 3278 1232 17.3 35.9
11 1 85 2013-11-13 1899-12-31 13:30:00 110 Deep -26.80 -45.30 16312 1615 21.3 36.5
120 2 96 2013-11-18 1899-12-31 23:50:00 5 Surf -27.39 -47.82 1150 75 23.1 33.5
121 2 96 2013-11-18 1899-12-31 23:50:00 30 Deep -27.39 -47.82 1737 218 22.6 33.7
122 2 96 2013-11-18 1899-12-31 23:50:00 50 Deep -27.39 -47.82 853 234 20.3 35.9
125 2 98 2013-11-18 1899-12-31 05:00:00 5 Surf -27.59 -47.39 3086 1300 23.1 35.7
126 2 98 2013-11-18 1899-12-31 05:00:00 50 Deep -27.59 -47.39 1217 782 23.7 37.2
127 2 98 2013-11-18 1899-12-31 05:00:00 85 Deep -27.59 -47.39 3420 226 22.9 37.0
13 1 86 2013-11-13 1899-12-31 17:00:00 105 Deep -26.33 -45.41 6366 1007 20.9 36.3
140 2 101 2013-11-18 1899-12-31 12:00:00 5 Surf -27.79 -46.96 500 366 23.5 36.5

Using the pipe operator - %>%

  samples_select <- samples %>% dplyr::select(transect:nanoeuks)
transect station date time depth level latitude longitude picoeuks nanoeuks
1 81 2013-11-13 1899-12-31 01:00:00 140 Deep -27.42 -44.72 3278 1232
1 85 2013-11-13 1899-12-31 13:30:00 110 Deep -26.80 -45.30 16312 1615
2 96 2013-11-18 1899-12-31 23:50:00 5 Surf -27.39 -47.82 1150 75
2 96 2013-11-18 1899-12-31 23:50:00 30 Deep -27.39 -47.82 1737 218
2 96 2013-11-18 1899-12-31 23:50:00 50 Deep -27.39 -47.82 853 234
2 98 2013-11-18 1899-12-31 05:00:00 5 Surf -27.59 -47.39 3086 1300
2 98 2013-11-18 1899-12-31 05:00:00 50 Deep -27.59 -47.39 1217 782
2 98 2013-11-18 1899-12-31 05:00:00 85 Deep -27.59 -47.39 3420 226
1 86 2013-11-13 1899-12-31 17:00:00 105 Deep -26.33 -45.41 6366 1007
2 101 2013-11-18 1899-12-31 12:00:00 5 Surf -27.79 -46.96 500 366
  • It is cleaner to write on 2 lines
  samples_select <- samples %>% 
    dplyr::select(transect:nanoeuks)

Renaming variables - rename

  samples <- samples %>% 
    dplyr::rename(sample_number = `sample number`)
sample_number transect station date time depth level latitude longitude picoeuks nanoeuks phosphates nitrates temperature salinity
10 1 81 2013-11-13 1899-12-31 01:00:00 140 Deep -27.42 -44.72 3278 1232 0.20 0.26 17.3 35.9
11 1 85 2013-11-13 1899-12-31 13:30:00 110 Deep -26.80 -45.30 16312 1615 0.29 0.22 21.3 36.5
120 2 96 2013-11-18 1899-12-31 23:50:00 5 Surf -27.39 -47.82 1150 75 0.43 0.19 23.1 33.5
121 2 96 2013-11-18 1899-12-31 23:50:00 30 Deep -27.39 -47.82 1737 218 0.43 0.23 22.6 33.7
122 2 96 2013-11-18 1899-12-31 23:50:00 50 Deep -27.39 -47.82 853 234 0.56 0.21 20.3 35.9
125 2 98 2013-11-18 1899-12-31 05:00:00 5 Surf -27.59 -47.39 3086 1300 0.29 0.25 23.1 35.7
126 2 98 2013-11-18 1899-12-31 05:00:00 50 Deep -27.59 -47.39 1217 782 0.25 0.20 23.7 37.2
127 2 98 2013-11-18 1899-12-31 05:00:00 85 Deep -27.59 -47.39 3420 226 0.25 0.47 22.9 37.0
13 1 86 2013-11-13 1899-12-31 17:00:00 105 Deep -26.33 -45.41 6366 1007 0.34 0.15 20.9 36.3
140 2 101 2013-11-18 1899-12-31 12:00:00 5 Surf -27.79 -46.96 500 366 0.29 0.14 23.5 36.5

Creating new variables - mutate

  samples <- samples %>% 
    dplyr::mutate(pico_pct = picoeuks/(picoeuks+nanoeuks)*100)
sample_number transect station date time depth level latitude longitude picoeuks nanoeuks phosphates nitrates temperature salinity pico_pct
10 1 81 2013-11-13 1899-12-31 01:00:00 140 Deep -27.42 -44.72 3278 1232 0.20 0.26 17.3 35.9 72.68293
11 1 85 2013-11-13 1899-12-31 13:30:00 110 Deep -26.80 -45.30 16312 1615 0.29 0.22 21.3 36.5 90.99124
120 2 96 2013-11-18 1899-12-31 23:50:00 5 Surf -27.39 -47.82 1150 75 0.43 0.19 23.1 33.5 93.87755
121 2 96 2013-11-18 1899-12-31 23:50:00 30 Deep -27.39 -47.82 1737 218 0.43 0.23 22.6 33.7 88.84910
122 2 96 2013-11-18 1899-12-31 23:50:00 50 Deep -27.39 -47.82 853 234 0.56 0.21 20.3 35.9 78.47286
125 2 98 2013-11-18 1899-12-31 05:00:00 5 Surf -27.59 -47.39 3086 1300 0.29 0.25 23.1 35.7 70.36024
126 2 98 2013-11-18 1899-12-31 05:00:00 50 Deep -27.59 -47.39 1217 782 0.25 0.20 23.7 37.2 60.88044
127 2 98 2013-11-18 1899-12-31 05:00:00 85 Deep -27.59 -47.39 3420 226 0.25 0.47 22.9 37.0 93.80143
13 1 86 2013-11-13 1899-12-31 17:00:00 105 Deep -26.33 -45.41 6366 1007 0.34 0.15 20.9 36.3 86.34206
140 2 101 2013-11-18 1899-12-31 12:00:00 5 Surf -27.79 -46.96 500 366 0.29 0.14 23.5 36.5 57.73672
  • You can also use transmute() but then it will drop all the other columns.
  • It is much much better to compute new variables in R than in Excel, because you can easily track and correct errors.

Using the pipe operator you can chain operations

  samples_select <- samples  %>% 
    dplyr::select(sample_number:nanoeuks, level) %>% 
    dplyr::mutate(pico_pct = picoeuks/(picoeuks+nanoeuks)*100)
sample_number transect station date time depth level latitude longitude picoeuks nanoeuks pico_pct
10 1 81 2013-11-13 1899-12-31 01:00:00 140 Deep -27.42 -44.72 3278 1232 72.68293
11 1 85 2013-11-13 1899-12-31 13:30:00 110 Deep -26.80 -45.30 16312 1615 90.99124
120 2 96 2013-11-18 1899-12-31 23:50:00 5 Surf -27.39 -47.82 1150 75 93.87755
121 2 96 2013-11-18 1899-12-31 23:50:00 30 Deep -27.39 -47.82 1737 218 88.84910
122 2 96 2013-11-18 1899-12-31 23:50:00 50 Deep -27.39 -47.82 853 234 78.47286
125 2 98 2013-11-18 1899-12-31 05:00:00 5 Surf -27.59 -47.39 3086 1300 70.36024
126 2 98 2013-11-18 1899-12-31 05:00:00 50 Deep -27.59 -47.39 1217 782 60.88044
127 2 98 2013-11-18 1899-12-31 05:00:00 85 Deep -27.59 -47.39 3420 226 93.80143
13 1 86 2013-11-13 1899-12-31 17:00:00 105 Deep -26.33 -45.41 6366 1007 86.34206
140 2 101 2013-11-18 1899-12-31 12:00:00 5 Surf -27.79 -46.96 500 366 57.73672

Creating labels with mutate and stringr functions

  samples <- samples %>% 
    dplyr::mutate(sample_label = str_c("TR",transect,"St",station, sep="_"))
sample_number transect station date time sample_label
10 1 81 2013-11-13 1899-12-31 01:00:00 TR_1_St_81
11 1 85 2013-11-13 1899-12-31 13:30:00 TR_1_St_85
120 2 96 2013-11-18 1899-12-31 23:50:00 TR_2_St_96
121 2 96 2013-11-18 1899-12-31 23:50:00 TR_2_St_96
122 2 96 2013-11-18 1899-12-31 23:50:00 TR_2_St_96
125 2 98 2013-11-18 1899-12-31 05:00:00 TR_2_St_98
126 2 98 2013-11-18 1899-12-31 05:00:00 TR_2_St_98
127 2 98 2013-11-18 1899-12-31 05:00:00 TR_2_St_98
13 1 86 2013-11-13 1899-12-31 17:00:00 TR_1_St_86
140 2 101 2013-11-18 1899-12-31 12:00:00 TR_2_St_101

Changing type of some columns - mutate

  • Use the lubridate package to manipulate dates
  samples <- samples %>% 
    dplyr::mutate(time = str_c(lubridate::hour(time), 
                               lubridate::minute(time), sep=":"))
sample_number transect station date time depth level latitude longitude picoeuks nanoeuks phosphates nitrates temperature salinity pico_pct
10 1 81 2013-11-13 1:0 140 Deep -27.42 -44.72 3278 1232 0.20 0.26 17.3 35.9 72.68293
11 1 85 2013-11-13 13:30 110 Deep -26.80 -45.30 16312 1615 0.29 0.22 21.3 36.5 90.99124
120 2 96 2013-11-18 23:50 5 Surf -27.39 -47.82 1150 75 0.43 0.19 23.1 33.5 93.87755
121 2 96 2013-11-18 23:50 30 Deep -27.39 -47.82 1737 218 0.43 0.23 22.6 33.7 88.84910
122 2 96 2013-11-18 23:50 50 Deep -27.39 -47.82 853 234 0.56 0.21 20.3 35.9 78.47286
125 2 98 2013-11-18 5:0 5 Surf -27.59 -47.39 3086 1300 0.29 0.25 23.1 35.7 70.36024
126 2 98 2013-11-18 5:0 50 Deep -27.59 -47.39 1217 782 0.25 0.20 23.7 37.2 60.88044
127 2 98 2013-11-18 5:0 85 Deep -27.59 -47.39 3420 226 0.25 0.47 22.9 37.0 93.80143
13 1 86 2013-11-13 17:0 105 Deep -26.33 -45.41 6366 1007 0.34 0.15 20.9 36.3 86.34206
140 2 101 2013-11-18 12:0 5 Surf -27.79 -46.96 500 366 0.29 0.14 23.5 36.5 57.73672

Manipulating rows

Order rows - arrange

  samples <- samples %>% 
    dplyr::arrange(transect, station)
sample_number transect station date time depth level latitude longitude picoeuks nanoeuks phosphates nitrates temperature salinity pico_pct
3 0 19 2013-11-02 13:30 5 Surf -25.79 -40.36 1005 898 0.29 0.48 22.7 36.9 52.81135
5 0 21 2013-11-02 0:0 5 Surf -26.23 -40.09 793 660 0.16 0.90 22.8 36.9 54.57674
7 0 26 2013-11-03 19:30 5 Surf -27.31 -39.38 907 856 0.20 0.50 21.2 36.4 51.44640
1 0 6 2013-10-31 5:20 45 Deep -23.58 -41.78 7651 4845 0.47 1.07 19.7 36.3 61.22759
2 0 6 2013-10-31 5:20 45 Deep -23.58 -41.78 7343 3258 0.47 1.07 19.7 36.3 69.26705
10 1 81 2013-11-13 1:0 140 Deep -27.42 -44.72 3278 1232 0.20 0.26 17.3 35.9 72.68293
9 1 81 2013-11-13 1:0 140 Deep -27.42 -44.72 3181 1235 0.20 0.26 17.3 35.9 72.03351
11 1 85 2013-11-13 13:30 110 Deep -26.80 -45.30 16312 1615 0.29 0.22 21.3 36.5 90.99124
13 1 86 2013-11-13 17:0 105 Deep -26.33 -45.41 6366 1007 0.34 0.15 20.9 36.3 86.34206
15 1 87 2013-11-13 19:30 105 Deep -26.22 -45.48 6189 622 0.47 1.51 19.5 36.1 90.86771
  • Station 6 is not ordered numerically. It is because station is a character column.

Order rows - transform to numeric

  samples <- samples %>% 
    dplyr::mutate(station = as.numeric(station)) %>% 
    dplyr::arrange(transect, station)
sample_number transect station date time depth level latitude longitude picoeuks nanoeuks phosphates nitrates temperature salinity pico_pct
1 0 6 2013-10-31 5:20 45 Deep -23.58 -41.78 7651 4845 0.47 1.07 19.7 36.3 61.22759
2 0 6 2013-10-31 5:20 45 Deep -23.58 -41.78 7343 3258 0.47 1.07 19.7 36.3 69.26705
3 0 19 2013-11-02 13:30 5 Surf -25.79 -40.36 1005 898 0.29 0.48 22.7 36.9 52.81135
5 0 21 2013-11-02 0:0 5 Surf -26.23 -40.09 793 660 0.16 0.90 22.8 36.9 54.57674
7 0 26 2013-11-03 19:30 5 Surf -27.31 -39.38 907 856 0.20 0.50 21.2 36.4 51.44640
10 1 81 2013-11-13 1:0 140 Deep -27.42 -44.72 3278 1232 0.20 0.26 17.3 35.9 72.68293
9 1 81 2013-11-13 1:0 140 Deep -27.42 -44.72 3181 1235 0.20 0.26 17.3 35.9 72.03351
11 1 85 2013-11-13 13:30 110 Deep -26.80 -45.30 16312 1615 0.29 0.22 21.3 36.5 90.99124
13 1 86 2013-11-13 17:0 105 Deep -26.33 -45.41 6366 1007 0.34 0.15 20.9 36.3 86.34206
15 1 87 2013-11-13 19:30 105 Deep -26.22 -45.48 6189 622 0.47 1.51 19.5 36.1 90.86771
  • One station named “Bloom” could not be converted to numerical (-> NA)

Summarize rows - count

  • Compute number of stations per transect
  stations_count <- samples %>% 
    dplyr::count(transect) 
transect n
0 5
1 5
2 18

Summarize rows - group_by / summarize

  • Group by transect and station
  • Compute mean of the percent picoplankton
  samples_mean <- samples %>% 
    dplyr::group_by(transect, station) %>% 
    dplyr::summarise(n_samples = n(), 
              mean_pico_percent = mean(pico_pct, na.rm=TRUE))
transect station n_samples mean_pico_percent
0 6 2 65.24732
0 19 1 52.81135
0 21 1 54.57674
0 26 1 51.44640
1 81 2 72.35822
1 85 1 90.99124
1 86 1 86.34206
1 87 1 90.86771
2 96 3 87.06651
2 98 3 75.01403

Filtering rows - filter

  • Get only the surface samples
  samples_surf <- samples %>% 
    dplyr::filter(level == "Surf" ) 
sample_number transect station date time depth level latitude longitude picoeuks nanoeuks phosphates nitrates temperature salinity pico_pct
3 0 19 2013-11-02 13:30 5 Surf -25.79 -40.36 1005 898 0.29 0.48 22.7 36.9 52.81135
5 0 21 2013-11-02 0:0 5 Surf -26.23 -40.09 793 660 0.16 0.90 22.8 36.9 54.57674
7 0 26 2013-11-03 19:30 5 Surf -27.31 -39.38 907 856 0.20 0.50 21.2 36.4 51.44640
120 2 96 2013-11-18 23:50 5 Surf -27.39 -47.82 1150 75 0.43 0.19 23.1 33.5 93.87755
125 2 98 2013-11-18 5:0 5 Surf -27.59 -47.39 3086 1300 0.29 0.25 23.1 35.7 70.36024
140 2 101 2013-11-18 12:0 5 Surf -27.79 -46.96 500 366 0.29 0.14 23.5 36.5 57.73672
155 2 106 2013-11-19 2:30 5 Surf -28.12 -46.17 355 18 0.25 0.37 23.0 36.9 95.17426
165 2 114 2013-11-19 21:40 5 Surf -28.65 -44.99 728 226 0.29 0.28 22.4 36.4 76.31027
Trichod.1 2 Surf -27.80 -47.10 1002 194 83.77926
Trichod.2 2 Surf -27.80 -47.10 744 206 78.31579
  • ! Use the logical operators == != > >= < <= is.na()

Recap

  • Import and Export data

  • Select and create columns

  • Summarize data

  • Joining

  • Long vs. Wide format

  • Displaying tables

Next time: Data visualization (ggplot2)

  • Understand the “grammar” of graphics
  • Create exploratory graphics


Reading list