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Members of the class Mamiellophyceae comprise
species that can dominate picophytoplankton
diversity in polar waters. Yet, polar species are often
morphologically indistinguishable from temperate
species, although clearly separated by molecular
features. Here we examine four Mamiellophyceae
strains from the Canadian Arctic. The 18S rRNA and
Internal Transcribed Spacer 2 (ITS2) gene phylogeny
place these strains within the family Mamiellaceae
(Mamiellales, Mamiellophyceae) in two separate
clades of the genus Mantoniella. ITS2 synapo-
morphies support their placement as two new
species, Mantoniella beaufortii and Mantoniella
baffinensis. Both species have round green cells with
diameter between 3 and 5 lm, one long flagellum and
a short flagellum (~1 lm) and are covered by
spiderweb-like scales, making both species similar to
other Mantoniella species. Morphologically,

M. beaufortii and M. baffinensis are most similar to the
cosmopolitan M. squamata with only minor dif-
ferences in scale structure distinguishing them.
Screening of global marine metabarcoding data sets
indicates M. beaufortii has only been recorded in
seawater and sea ice samples from the Arctic, while
no environmental barcode matches M. baffinensis.
Like other Mamiellophyceae genera that have distinct
polar and temperate species, the polar distribution of
these new species suggests they are cold or ice-
adapted Mantoniella species.
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Over the last few decades, the taxonomy of green
algae has gone through a profound reorganization.
The class Prasinophyceae, initially defined as scaly
flagellates (Moestrup and Throndsen 1988), has
been rearranged into several new classes including
Chlorodendrophyceae, Chloropicophyceae, and
Mamiellophyceae (Massjuk 2006, Marin and Melko-
nian 2010, Lopes dos Santos et al. 2017b), as well as
clades without formal names (Guillou et al. 2004,
Tragin et al. 2016), leading to the abandonment of
the class name Prasinophyceae. The Mamiel-
lophyceae are ecologically successful and particu-
larly dominant in marine coastal waters (Lopes dos
Santos et al. 2017a, Tragin and Vaulot 2018). The
first scaled species of Mamiellophyceae observed
were Mantoniella squamata (as Micromonas squamata,
Manton and Parke 1960) and Mamiella gilva (as
Nephroselmis gilva; Park and Rayns 1964). Moestrup
(1984) erected the family Mamiellaceae, which
included Mantoniella and Mamiella, with Mamiella
gilva designated as the type species. Mamiel-
lophyceae comprises three orders: Monomastigales,
with one freshwater genus Monomastix; Doli-
chomastigales, with two genera Crustomastix and
Dolichomastix; and Mamiellales, which currently com-
prises five genera Bathycoccus, Mamiella, Mantoniella,
Micromonas, and Ostreococcus. As these genera are
morphologically heterogeneous, with Micromonas
and Ostreococcus lacking scales and Bathycoccus and
Ostreococcus lacking flagella, the monophyly of
Mamiellophyceae was established based on nuclear
and plastid rRNA sequence and secondary structure
analyses (Marin and Melkonian 2010).

Molecular analyses of the Mamiellophyceae have
permitted the description of otherwise morphologi-
cally indistinguishable cryptic species. For example,
wide genetic diversity has been shown to exist
between morphologically identical Ostreococcus spe-
cies where less than 1% difference in the 18S rRNA
gene corresponds to up to 30% of variation in
orthologous protein coding sequences (Palenik
et al. 2007, Piganeau et al. 2011). From an early
stage, 18S rRNA-defined clades of Micromonas and
Ostreococcus were observed to have distinct geo-
graphic distributions, suggesting their genetic varia-
tion reflected adaptations to ecological niches
(Rodr�ıguez et al. 2005, Foulon et al. 2008) and that
these clades represented distinct species. Ostreococcus
is divided into rare species restricted to estuarine
(O. mediterraneus) and coastal environments
(O. tauri), as well as more abundant oceanic species
(O. lucimarinus and clade B; Demir-Hilton et al.
2011, Treusch et al. 2012, Hu et al. 2016, Simmons
et al. 2016). Micromonas cells were observed to be
abundant in the Arctic Ocean (Throndsen and Kris-
tiansen 1991, Sherr et al. 2003, Not et al. 2005) that
subsequent 18S rRNA analyses revealed them to
belong to a clade with an Arctic distribution (Love-
joy et al. 2007, Balzano et al. 2012). Micromonas has
since been revised defining the Arctic clade as the

species M. polaris, and species originating from
lower latitudes as M. bravo, M. commoda, and
M. pusilla (Simon et al. 2017). Similarly, in Man-
toniella, M. antarctica was described from the Antarc-
tic, whereas M. squamata was cosmopolitan
(Marchant et al. 1989).
Three picophytoplanktonic strains (RCC2285,

RCC2288, and RCC2497) were isolated in the Cana-
dian Arctic from mesophilic surface water sampled
at two sites in the Beaufort Sea in the summer of
2009 as part of the MALINA cruise (Balzano et al.
2012). A fourth strain (RCC5418) was subsequently
isolated from sea ice collected in Baffin Bay in the
spring as part of the Green Edge project. We per-
formed a combination of molecular, morphological,
and pigment characterization of these isolates,
which we propose to constitute two novel Man-
toniella species, M. beaufortii and M. baffinensis,
restricted to polar environments.

METHODS

Culture conditions. Strains RCC2285, RCC2288, and
RCC2497 were isolated from seawater collected at two sites
(70°300 N, 135°300 W and 70°340 N, 145°240 W) in the Beau-
fort Sea in the summer of 2009 as part of the MALINA cruise
as described previously (Balzano et al. 2012). Strain RCC5418
was isolated from the Green Edge project Ice Camp (http://
www.greenedgeproject.info/), a sampling site on the sea ice
near the village of Qikiqtarjuaq (67°28.7840 N, 63°47.3720 W).
Sampling was conducted between April 20 and July 27, 2016,
beginning in completely snow covered conditions followed by
bare ice and ending when the ice was broken out. Sea ice
from May 23, 2016 was melted overnight and 200 mL was
gravity filtered (Sartorius filtration system) through 3 lm
pore size polycarbonate filters (Millipore Isopore membrane,
47 mm). 500 lL of filtrate was enriched by addition to 15 mL
of L1 medium (NCMA, Bigelow Laboratory for Ocean
Sciences, ME, USA). The enrichment culture was purified by
dilution to 10 cells per well in a 96-deep-well plate (Eppen-
dorf) and incubated under white light (100 lE � m�2 � s�1)
in a 12:12 h light:dark cycle at 4°C. Cell growth was observed
by the development of coloration after a few weeks. Culture
purity was assessed by flow cytometry (Becton Dickinson,
Accuri C6). After confirmation of the purity, the culture was
transferred in a 50 mL ventilated flask (Sarstedt). Cultures
are maintained in the Roscoff Culture Collection (http://
roscoff-culture-collection.org/) in K/2 (Keller et al. 1987) or
L1 medium at 4°C under a 12:12 h light: dark cycle at 100
lE light intensity. RCC2285 has been lost from culture since
molecular analyses (described below) were performed. For
pigment analysis and electron microscopy, RCC2288 was
grown at 7°C under continuous light at 100 lE intensity in
L1 medium prepared using autoclaved seawater from off-
shore Mediterranean Sea water diluted 10% with MilliQ water
and filtered prior to use through 0.22 lm filters. Holotype
specimens were deposited in O (Natural History Museum,
University of Oslo), herbarium acronym follows Thiers
(2019).

Sequences. Nuclear 18S rRNA and the Internal Tran-
scribed Spacers (ITS) 1 and 2, as well as the 5.8S rRNA
gene were retrieved from GenBank for strains RCC2288,
RCC2497, and RCC2285 (Balzano et al. 2012). For
RCC5418 and RCC5150 (Mantoniella antarctica), cells were
harvested in exponential growth phase and concentrated by
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centrifugation. Total nucleic acids were extracted using the
Nucleospin Plant II kit (Macherey-Nagel, D€uren, DE, USA)
following the manufacturer’s instructions. The nearly full-
length nuclear 18S rRNA gene (only RCC5418) and the
region containing the Internal Transcribed Spacers (ITS) 1
and 2, as well as the 5.8S rRNA gene were obtained by
PCR amplification using universal primers (Table S1 in the
Supporting Information). PCR products were directly
sequenced at the Macrogen Company (Korea) and
sequences have been deposited to Genbank under acces-
sion numbers MH516003, MH516002, and MH542162.

ITS2 secondary structure. The ITS2 secondary structure
from the strains listed in Table 1 was predicted using the
Mfold web interface (Zuker 2003) under the default options
with the folding temperature fixed at 37°C, resulting in multi-
ple alternative folding patterns per sequence. The prelimi-
nary structure for each sequence was chosen based on
similarities found among the other structures proposed for
Mamiellophyceae (Marin and Melkonian 2010, Simon et al.
2017) as well as on the presence of previously defined ITS2
hallmarks defined by Coleman (Mai and Coleman 1997, Cole-
man 2000, 2003, 2007). Exported secondary structures in
Vienna format and the respective nucleotide sequences were
aligned, visualized using 4SALE version 1.7 (Seibel et al.
2008), and manually edited through extensive comparative
analysis of each position (nucleotide) in sequences from rep-
resentatives of the Mamiellophyceae. The ITS2 synapomorphy
analysis was confined to those positions that formed con-
served base pairs in all members of the Mamiellaceae order
and the resulting intramolecular folding pattern (secondary
structure) of Mantoniella was drawn using CorelDRAW X7. A
Vienna file containing the ITS2 sequences and secondary
structure is available at https://doi.org/10.6084/m9.figshare.
7472153.v1.

Phylogenetic analyses. Nuclear 18S rRNA sequences belong-
ing to members of Mamiellophyceae were retrieved from
GenBank (http://www.ncbi.nlm.nih.gov/). Two environmen-
tal sequences (similar to strain sequences) were included in
addition to the sequences obtained from the cultures.
Sequences were also obtained for the ITS2 region located
between the 5S and 23S rRNA genes. However, no environ-
mental sequences were available to be included in the 18S/
ITS phylogenetic analyses.

In all, 27 nuclear 18S rRNA and 14 ITS2 sequences were
aligned with MAFFT using the E-INS-i and G-INS-i algorithms,
respectively (Katoh and Toh 2008). Alignments were visual-
ized and manually edited using Geneious 10.2.5 (Kearse et al.
2012). The ITS2 alignment was further edited on the basis of
conserved secondary structures (see above). The nuclear 18S
rRNA and ITS2 sequences from the Mamiellaceae members
were concatenated using Geneious 10.2.5 (Kearse et al.
2012). Lengths of the resulting alignments were 1,567 bp for
18S rRNA (1,242 identical sites, 295 variable, and 191 parsi-
mony-informative sites) and 1,875 bp for concatenated 18S-
ITS sequences (1,544 identical sites, 302 variable, and 179
parsimony-informative).

Phylogenetic reconstructions with two different methods,
maximum likelihood (ML) and Bayesian analyses, were per-
formed using the nuclear Mamiellophyceae 18S rRNA and
Mamiellaceae concatenated 18S/ITS2 alignments.

The K2 + G + I model was selected for both sequence data
sets based on the substitution model selected through the
Akaike information criterion (AIC) and the Bayesian informa-
tion criterion (BIC) options implemented in MEGA 6.06
(Tamura et al. 2013). ML analysis was performed using
PhyML 3.0 (Guindon et al. 2010) with SPR (Subtree Pruning
and Regrafting) tree topology search operations and approxi-
mate likelihood ratio test with Shimodaira-Hasegawa-like pro-
cedure. Markov chain Monte Carlo iterations were conducted
for 1,000,000 generations sampling every 100 generations
with burning length 100,000 using MrBayes 3.2.2 (Ronquist
and Huelsenbeck 2003) as implemented in Geneious (Kearse
et al. 2012). Nodes were considered as well supported when
SH-like support values and Bayesian posterior probabilities
were higher than 0.8 and 0.95, respectively. The same criteria
were used to represent the sequences on the phylogenetic
trees. Alignments are available at https://doi.org/10.6084/
m9.figshare.7472153.v1.

Screening of environmental 18S rRNA sequencing data
sets. High-throughput sequencing metabarcodes (V4 and V9
hypervariable regions) were obtained from several published
polar studies, as well as from the global sampling efforts Tara
Oceans and Ocean Sampling Day (OSD; see Table S2 in the
Supporting Information for the full details and references for
each project). We screened these data as well as GenBank by
BLASTn (98% identity cut-off) using RCC2288 18S rRNA
gene sequence as the search query. We aligned the retrieved
environmental sequences and metabarcodes with that of
RCC2285, RCC2288, RCC2497, and RCC5418 using MAFFT
as implemented in Geneious version 10.0.7 (Kearse et al.
2012). This allowed the determination of sequence signatures
diagnostic of this species for both V4 and V9 (Figs. S1 and S2
in the Supporting Information). The oceanic distribution of
stations where cultures, clones, and metabarcodes having
these signatures, as well as the stations from the metabarcod-
ing surveys where no matching metabarcodes have been
found, were plotted with the R libraries ggplot2 and rworld-
map. The R script is available at https://vaulot.github.
io/papers/RCC2288.html.

Light microscopy. Cells were observed using an Olympus
BX51 microscope (Olympus, Hamburg, Germany) with a
1009 objective using differential interference contrast (DIC)
and imaged with a SPOT RT-slider digital camera (Diagnos-
tics Instruments, Sterling Heights, MI, USA).

For video microscopy, cultures from RCC2288 and
RCC2497 were observed with an inverted Olympus IX70
inverted microscope using an 940 objective and equipped
with an Infinity X camera (https://www.lumenera.com/pro
ducts/microscopy/infinityx-32.html). Short sequences were
recorded and edited with the Video de Luxe software
(http://www.magix.com/fr/video-deluxe/). Films were uploaded
to Youtube (https://www.youtube.com/channel/UCsYoz-

TABLE 1. Strains used in this study.

Strain Strain name Oceanic region Latitude Longitude Depth of isolation (m) 18S rRNA ITS Remark

RCC2285 MALINA E43.N1 Beaufort Sea 70°340 N 145°240 W 0 JF794053 JQ413368 Strain lost
RCC2288 MALINA E47.P2 Beaufort Sea 70°300 N 135°300 W 0 JN934679 JQ413369
RCC2497 MALINA E47.P1 Beaufort Sea 70°300 N 135°300 W 0 KT860921 JQ413370
RCC5418 GE_IP_IC_DIL_490 Baffin Bay 67°280 N 63°460 W Surface ice MH516003 MH542162

RCC: Roscoff Culture Collection (www.roscoff-culture-collection.org). 18S rRNA and ITS show Genbank accession numbers.
Strains in bold used to describe the new species.
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aSJlJesyDNj6ZVolQ/videos). Video microscopy of swimming
behavior of RCC2288 (https://youtu.be/CGKNxzfGUvQ),
RCC2497 (https://youtu.be/rRNuk5Lx7Aw), and RCC5418
(https://youtu.be/xoxCEl1cv4Q). The recording protocol is
available at dx.doi.org/10.17504/protocols.io.k24cygw.

Transmission electron microscopy. Positive-stained whole mount
cells were prepared as described by Moestrup (1984), where
cultures were directly deposited on formvar-coated copper
grids and stained with 2% uranyl acetate. TEM thin sections
was performed as previously described (Derelle et al. 2008).
Briefly, fixed RCC2288 cells (1% glutaraldehyde) from an
exponentially growing culture were suspended in molten
(37°C) 1% low melting point agarose. The agarose cell plug
was fixed, washed, dehydrated in ethanol, and embedded in
Epon 812. Ultra-thin sections (80–90 nm) were placed on a 300
mesh copper grid and stained with uranyl acetate for 15 min,
followed by lead citrate staining for 2 min. The cells were visu-
alized with Hitachi H 7500 and H-9500 transmission electron
microscopes.

Pigment analysis. Pigments were extracted from RCC2288
cells in late exponential phase as previously described (Ras
et al. 2008). Briefly, cells were collected on 0.7 lm particle
retention size filters (GF/F Whatman), pigments extracted
for 2 h in 100% methanol, then subjected to ultrasonic dis-
ruption and clarified by filtration through 0.2 lm pore-size
filters (PTFE). Pigments were detected using high-perfor-
mance liquid chromatography (HPLC, Agilent Technologies
1200 CA, USA) over the 24 h after the extraction.

RESULTS AND DISCUSSION

Taxonomy section. Mantoniella beaufortii Yau, Lopes
dos Santos and Eikrem sp. nov.

Description: Cells round measuring 3.7 � 0.4 lm in
diameter with one long (16.3 � 2.6 lm) and one
short flagellum (~1 lm). Cell body and flagella cov-
ered in imbricated spiderweb scales. Flagellar hair
scales present composed of two parallel rows of sub-
units. Long flagellum tip has tuft of three hair scales.
Scales produced in Golgi body. Golgi body located
beneath and to one side of basal bodies. One green
chloroplast with pyrenoid surrounded by starch and a
stigma composed of a single layer of oil droplets
(~0.1 lm). Ejectosomes composed of fibrils located at
periphery of cell. Cell bodies with sub-quadrangular
to oval scales (~0.2 lm). Body scales heptaradial, with
seven major spokes radiating from center, number of
spokes increasing toward the periphery. Six or more
concentric ribs divide the scale into segments. Flagella
with hexaradial oval scales composed of six spokes
increasing in number toward the periphery. Six or
more concentric ribs divide the scale into segments.
Combined nucleotide sequences of the 18S rRNA
(JN934679) and ITS2 rRNA (JQ413369) are species
specific.

Holotype: Accession number O-A10010, plastic
embedded specimen, 14 July 2009, from surface
water, MALINA cruise leg 1b. Figure 4 shows the
cells from the embedding. Culture deposited in The
Roscoff Culture Collection as RCC2288.

Type locality: Beaufort Sea in the Arctic Ocean
(70°300 N, 135°300 W).

Etymology: Named for its geographic provenance.

Mantoniella baffinensis Yau, Lopes dos Santos and
Eikrem sp. nov.
Description: Cells measuring 4.7 � 0.5 lm with

one long flagellum of 21.8 � 5.1 lm and one short
flagellum (~1 lm). Cell body and flagella covered
in imbricated spiderweb scales. Flagellar hair scales
present composed of two parallel rows of subunits.
Long flagellum tip has tuft of three hair scales. Cell
bodies with sub-quadrangular to oval scales (~0.2
lm). Body scales octaradial with eight major radial
spokes radiating from center, number of spokes
increasing toward the periphery. Seven or more
concentric ribs divide the scale into segments. Flag-
ella with heptaradial, oval scales composed of seven
spokes increasing in number toward the periphery.
Six or more concentric ribs divide the scale into seg-
ments. Combined nucleotide sequences of the
nuclear 18S rRNA (MH516003) and ITS2 rRNA
(MH542162) are species specific.
Holotype: Accession number O-A10011, plastic

embedded specimen, May 23, 2016, from surface sea
ice, Green Edge project Ice Camp. Culture deposited
in The Roscoff Culture Collection as RCC5418.
Type locality: Surface sea ice off the coast of Baf-

fin Island in Baffin Bay (67°280 N, 63°460 W).
Etymology: Named for its geographic provenance.
Phylogeny and ITS signatures. The phylogenetic

tree based on nearly full-length nuclear 18S rRNA
sequences obtained from the novel polar strains
RCC2288, RCC2285, RCC2497, and RCC5418
(Table 1), and environmental sequences retrieved
from GenBank indicated that these strains belong
to the family Mamiellaceae (Fig. S3 in the Support-
ing Information). The analysis also recovered the
major genera within Mamiellales: Bathycoccus, Ostreo-
coccus, Micromonas, Mantoniella, and Mamiella (Marin
and Melkonian 2010). Dolichomastigales and Mono-
mastigales were the basal orders in Mamiel-
lophyceae with Monomastix opisthostigma type species
used as an outgroup. Strains RCC2485, RCC2288,
and RCC2497 isolated during the MALINA cruise in
the Beaufort Sea and strain RCC5418 isolated from
Baffin Bay during the Green Edge project Ice Camp
formed a well-supported clade together with two
environmental sequences (clone MALINA St320 3m
Nano ES069 D8 and clone 4-E5), which also origi-
nated from Arctic Ocean samples. The two
described Mantoniella species (M. squamata and M.
antarctica) were not monophyletic in our analysis
using the nuclear 18S rRNA, as reported by Marin
and Melkonian (2010; fig. S3).
In contrast, the phylogenetic tree based on con-

catenated 18S/ITS2 alignments suggested that our
strains belong in Mantoniella (Fig. 1). The grouping
of our strains within Mantionella in the concatenated
18S/ITS tree was consistent with a recent nuclear
multigene phylogeny based on 127 concatenated
genes from related Chlorophyta species that also
included RCC2288 with Mantoniella species (Lopes
dos Santos et al. 2017b). This indicated the 18S/
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ITS2 tree reflects the evolutionary history of the
nuclear genome supporting the position of Man-
toniella and our strains diverging from the same
common ancestor.

The average distance between strains RCC2485,
RCC2288, and RCC2497 was low (0.5% of segregat-
ing sites over the near full-length 18S rRNA gene),
suggesting that these strains corresponded to a sin-
gle species that we named Mantoniella beaufortii (see
Taxonomy section). In contrast, the well-supported
placement of strain RCC5418 on an earlier diverg-
ing branch within the Mantoniella clade, as well as
the 1% average distance between RCC5418 and the
other strains, suggested it represents another spe-
cies, named here Mantoniella baffinensis.

To substantiate the description of Mantoniella
beaufortii and M. baffinensis as new species, we investi-
gated ITS2 synapomorphies of the different Man-
toniella species. Although the use of ITS2 in

taxonomy should be considered with caution
(M€uller et al. 2007, Caisov�a et al. 2011), several
studies have shown the power of using ITS2
sequences in delimiting biological species, especially
in microalgal studies (e.g., Coleman 2007, Caisov�a
et al. 2011) including green algae (Subirana et al.
2013, Simon et al. 2017). For example, ITS sequenc-
ing contributed to distinguishing the Arctic diatom
Chaetoceros neogracilis from an Antarctic Chaetoceros
sp. that shared nearly identical 18S rRNA genes
(Balzano et al. 2017). The analysis of ITS2 sec-
ondary structure in addition to molecular signatures
of nuclear and plastid SSU rRNA genes supported
the description of Chloropicophyceae clades as dis-
tinct species, despite the absence of clear morpho-
logical differences (Lopes dos Santos et al. 2017b).
This conclusion has been further supported by
recent phylogenetic analyses of chloroplast and
mitochondrial genomes (Turmel et al. 2019). The

CCMP489 AJ010408, AY955002Micromonas commoda
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RCC804 KU244661, KU244662Micromonas commoda
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Mantoniella beaufortii RCC2288 JN934679, JQ413369

RCC2497 KT860921, JQ413370

RCC2285 JF794053, JQ413368
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CCAP1965-1 X73999, FN562451Mantoniella squamata

RCC5150 AB017128, MH516002Mantoniella antarctica

PLY197 FN562450, FN562450Mamiella gilva

0.01

00 1 4 ./8.0

./ 00 1 1

0.85 /-

./ 00 1 1

./ 00 1 99.0
./ 00 1 49.0

./ 00 1 69.0

./ 00 1 1

0.81/0.73

0.78/0.98

Mantoniella beaufortii

Mantoniella beaufortii

FIG. 1. Maximum-likelihood tree inferred from concatenated 18S/ITS2 sequences of Mamiellaceae. Solid dots correspond to nodes
with significant support (> 0.8) for ML analysis and Bayesian analysis (> 0.95). Empty dots correspond to nodes with non-significant
support for either ML or Bayesian analysis, or both.
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computed ITS2 secondary structure of the new Man-
toniella strains contained the four helix domains
found in many eukaryotic taxa (Fig. S4 in the
Supporting Information), in addition to Helix B9.
The intramolecular folding pattern of the ITS2 tran-
script from M. beaufortii and M. baffinensis was very
similar to the one from M. squamata and M. antarc-
tica (Fig. S4). The universal hallmarks proposed by
Mai and Coleman (1997) and Schultz et al. (2005)
were present in Helices II and III of the Mamiel-
laceae. These were the Y-Y (pyrimidine–pyrimidine)
mismatch at conserved base pair 7 in Helix II
(Fig. 2) and YRRY (pyrimidine–purine–pyrimidine)
motif at conserved positions 28–31 on the 50 side of
Helix III (Fig. S5a in the Supporting Information).
In all four strains, the Y-Y mismatch was represented
by the pair U-U and the YRRY motif by the
sequence UGGU.

The structural comparison at each base pair posi-
tion within the ITS2 helices identified several com-
pensatory base changes (CBCs) and single-side
changes or hemi-CBCs (hCBCs), as well as con-
served base pair positions among Mantoniella species
(Fig. S4). Note that we only considered hCBCs at
positions where the nucleotide bond was preserved.
No CBCs were found between the three M. beaufortii
strains consistent with their designation as a single
species. However, three hCBCs were detected in
Helix II at positions 15 and 17 (Fig. 2) and Helix
III at position 12 (Fig. S5A). Three CBCs were
detected in Helices I (position 4), II (position 15),
and IV (position 22) between M. beaufortii and
M. baffinensis, supporting the separation of these
strains into two distinct species (Figs. 2 and S4).
When possible, the evolutionary steps of the identi-
fied CBCs and hCBCs were mapped upon branches
of the Mamiellaceae phylogenetic tree that was con-
structed based on the concatenated 18S/ITS2
(Figs. 2 and S4) to distinguish synapomorphies
from homoplasious changes (e.g., parallelisms and
reversals). Few hypervariable positions showing sev-
eral changes (CBCs and hCBCs) could not be
unambiguously mapped upon the tree.
Morphology and ultrastructure. Under light micro-

scopy, the cells of the new strains were green and
round with one long and one short reduced flagel-
lum (~1 lm), which were inserted almost perpen-
dicularly to the cell (Fig. 3). They swam with their
flagella directed posteriorly, pushing the cell. Occa-
sionally, the cells ceased movement, pirouetted, and
took off again in a different direction (video links
in the Materials and Methods). All strains possessed
a stigma, visible in light microscopy as a red eyespot
located opposite the flagella. Although there are no
morphological characters that are unique to the
mamiellophyceans and shared by all of its members,
the new strains closely resembled Mantoniella and
Mamiella, which are similarly small round bi-flagel-
lated cells (see Table S3 in the Supporting Informa-
tion for morphological characters in described

Mamiellophyceae). However, the flagella of Mamiella
are of equal or near equal lengths (Moestrup 1984),
so clearly the unequal flagella observed in our
strains conform with described Mantoniella species,
M. squamata, and M. antarctica (Barlow and Cat-
tolico 1980, Marchant et al. 1989). The new strains
were thus morphologically indistinguishable by light
microscopy from Mantoniella species, supporting
their placement in the genus.
The new strains were in the size range (Table 2)

reported for Mantoniella squamata (3–6.5 lm) and
M. antarctica (2.8–5 lm; Manton and Parke 1960,
Marchant et al. 1989). Nonetheless, M. beaufortii strains
were significantly smaller than M. baffinensis in cell
diameter and average long flagellum length (Table 2)
providing a means to distinguish the two new Man-
toniella species from each other with light microscopy.
Transmission electron microscopy (TEM) of thin

sections (Fig. 4) and whole mounts (Fig. 5) of the
new strains provided details of their internal and
external morphological features. The single chloro-
plast was cup-shaped with a pyrenoid surrounded by
starch tubules running through the pyrenoid. The
stigma was composed of a single layer of oil droplets
(approximately 0.1 lm in diameter; Fig. 4a) and
located at the periphery of the chloroplast facing
the cell membrane, conforming to the description
of the family Mamiellaceae (Marin and Melkonian
2010). Several large ejectosomes composed of fibrils
were present at the cell periphery (Fig. 4, d and e).
They are common in the Mamiellales (Moestrup
1984, Marchant et al. 1989) and are perhaps used
to deter grazers.
One of the most salient features of the Mamiel-

lophyceae is the presence of organic scales covering
the cell, the most common of which comprise radi-
ating and concentric ribs resembling spiderwebs
that are present in the scale-bearing Mamiellales
(Bathycoccus, Mamiella, and Mantoniella), as well as
Dolichomastix (Table S3). We examined the whole
mounts of the new Mantoniella species to establish
the presence of scales and determine if they were
morphologically distinguishable from related spe-
cies, as M. antarctica (Marchant et al. 1989) and
Mamiella gilva (Moestrup 1984) each have a unique
type that differentiate them from other Mamiellales.
The flagella and cell bodies of the new strains

were covered in imbricated spiderweb-like scales
(Fig. 5) measuring approximately 0.2 lm. The scales
were produced in the Golgi body (Fig. 4b). The
body scales were sub-quadrangular to oval, whereas
the flagellar scales were oval (Fig. 5). Spiderweb
scales had 6–8 major spokes radiating from the cen-
ter with the number of spokes increasing toward the
periphery and six or more concentric ribs dividing
the scale into segments. In addition, there were
some small scales (approximately 0.1 lm) on the
cell body composed of four spokes (increasing to
eight) and separated by four, more or less concen-
tric, ribs (Fig. 5, d and g). The flagella were also
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covered by lateral hair scales, which were composed
of two parallel rows of globular subunits. At the tip
of the long flagellum, there was a tuft of three hair

scales, for which the subunits were more closely
packed together than the lateral hair scales (Fig. 5).
The hair scales of the new strains were identical to
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FIG. 2. Molecular signatures of Mantoniella species based on comparison of ITS2 secondary structures within Mamiellaceae. Signatures
in Helix I and II are bolded. The conserved base pairs among the different groups are numbered. Compensatory base changes (CBCs)
and hemi-CBCs (hCBSs) are highlighted by solid and dotted arrows, respectively. Hypervariable positions are marked by an asterisk (*).
Ellipsis (. . .) represent the other clades and species of Micromonas. The pyrimidine–pyrimidine (Y-Y) mismatch in Helix II is shown in bold
black. Single nucleotide substitutions are shown by grey nucleotides. Identified homoplasious changes are shown as parallelisms and
reversals. [Color figure can be viewed at wileyonlinelibrary.com]
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the “Tetraselmis-type” T-hairs previously described in
Mantoniella and Mamiella (Marin and Melkonian
1994). This structure is otherwise only seen in Doli-
chomastix lepidota and differs from the smooth tubu-
lar T-hairs of Dolichomastix tenuilepis and Crustomastix

(Marin and Melkonian 1994, Zingone et al. 2002,
Table S3).
Comparison of the spiderweb scales between Man-

toniella species (Table 3) showed the new species dif-
fer significantly from M. antarctica, which possesses
lace-like scales with six or seven radial ribs with very
few concentric ribs (Marchant et al. 1989). Morpho-
logically, the spiderweb scales of the new species
most resembled M. squamata, which has large hep-
taradial flagellar scales, octaradial body scales, and a
few additional small tetraradial body scales (March-
ant et al. 1989). Indeed, the spiderweb scales of
M. baffinensis (Fig. 5) were structurally indistinguish-
able from M. squamata. In contrast, M. beaufortii
shared the small tetraradial body scales but pos-
sessed hexaradial flagellar scales and heptaradial
body scales, potentially allowing it to be differenti-
ated from the other Mantoniella based on the num-
ber of radial spokes of the spiderweb scales.
Pigment composition. Pigment to chlorophyll a

ratios of Mantoniella beaufortii RCC2288 were com-
pared to a selection of other Chlorophyta species
(Fig. 6; Table S4 in the Supporting Information)
from previous studies (Latasa et al. 2004, Lopes dos
Santos et al. 2016), as pigments are useful pheno-
typic traits. Chlorophyll a and b, characteristics of
Chlorophyta, were detected, as well as the basic set
of carotenoids found in the prasinophytes: neoxan-
thin, violaxanthin, lutein, zeaxanthin, antheraxan-
thin, and b-carotene. The additional presence of
prasinoxanthin, micromonal, and uriolide placed
RCC2288 in the PRASINO-3B group of prasinophyte
green algae, sensu Jeffrey et al. (2011). This pig-
ment-based grouping showed good agreement with
the molecular phylogeny of Mamiellales, where the
presence of prasinoxanthin, micromonal, and the
Unidentified M1 pigment are diagnostic of the
order (Marin and Melkonian 2010). We did not
detect Unidentified M1 in RCC2288, but as our
analysis method differed from previous work (Latasa
et al. 2004) and we relied on matching its chro-
matographic and spectral characteristics, its absence
requires further confirmation. Notwithstanding, the
pigment complement of RCC2288 was identical to
other described Mamiellales (Fig. 6; Table S4),
coherent with its classification within this order.
As noted by Latasa et al. (2004), Mamiellales pig-

ment profiles are remarkably comparable (Fig. 6),
despite strains being cultured under very different
conditions. Only a few carotenoids differed substan-
tially (at least 2-fold) in relative abundance between
Mantoniella beaufortii and the two other M. squamata
strains analyzed: the concentration of neoxanthin,
antheraxanthin, and lutein were higher, whereas
that of Mg-DVP and uriolide were relatively lower
(Fig. 6; Table S4). Neoxanthin (associated with the
light harvesting complex), as well as antheraxanthin
and lutein (both involved in photoprotection), has
previously been shown to increase significantly in
M. squamata grown under continuous light

RCC2288

RCC5418

RCC5418

RCC2497

RCC5418

RCC2497

RCC2288

A

B

C

D

E

F

G

FIG. 3. Light microscopy images of the new Mantoniella strains.
All strains have round cell morphology, visible red stigma (black
arrow), a long and short flagella (white arrow), and one chloro-
plast with a pyrenoid (white arrowhead). Scale bar is 4 lm for all
images. (A–B) M. beaufortii RCC2288. (C–D) M. beaufortii
RCC2497 during cell division and single cell showing long and
short flagella. (E–G) M. baffinensis RCC5418 single cell (E), dur-
ing cell division (F) and cell showing the short flagellum (G
inset). [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2. Cell diameter and long flagellum lengths mea-
sured for Mantoniella beaufortii (RCC2288 and RCC2497)
and M. baffinensis (RCC5418).

Strain Min Max Mean Median SD n

Cell diameter (lm)
RCC2288 2.89 4.98 3.77 3.70 0.41 60
RCC2497 3.15 4.74 3.87 3.77 0.39 39
RCC5418 3.54 5.69 4.66 4.66 0.51 69

Long flagellum length (lm)
RCC2288 12.93 21.47 16.27 15.99 2.63 11
RCC2497 11.91 21.25 16.31 17.07 2.71 12
RCC5418 11.27 32.59 21.78 21.29 5.14 25

n = number of cells measured and SD = standard deviation.
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compared to alternating light/dark cycles (B€ohme
et al. 2002). Therefore, the relatively high ratio of
these carotenoids measured in M. beaufortii is consis-
tent with growth under continuous light used with
RCC2288. Uriolide and Mg-DVP have been observed
to increase with light intensity in M. squamata
(B€ohme et al. 2002) and Micromonas pusilla (Laviale
and Neveux 2011), respectively. Although more
physiological data are required to interpret their rel-
ative decrease in RCC2288, these pigments are prob-
ably most responsive to light conditions (intensity
and photoperiod).

Two unknown carotenoids were detected in
RC2288, the first one having adsorption peaks at 412,
436, and 464 nm, and the second one at 452 nm
(Table S5 in the Supporting Information). These were
relatively minor components comprising 2.7% and
1.5% of total carotenoids, respectively, and may repre-
sent carotenoids unique toMantoniella beaufortii.
Environmental distribution. To obtain information

on the distribution of these two new species, we
searched by BLAST both environmental GenBank
sequences and published 18S V4 and V9 metabar-
code data sets (Table S2). This allowed the retrieval
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FIG. 4. TEM thin sections of
Mantoniella beaufortii RCC2288.
(A) Internal cell structure
showing organelles and stigma
(black arrow). (B) Detail of the
hair and spiderweb scales
covering the long flagellum.
Scales produced in the Golgi
body. (C) Detail of the flagellar
base (black arrow). (D) Cell with
long and short flagella and
longitudinal section of the
ejectosomes (black arrow). (E)
Cross-section of ejectosomes
(black arrow). (F) and (G) body
scales made up of radiating and
concentric ribs. e=ejectosome,
g=Golgi, s=starch granule, m=
mitochondrion, n=nucleus, p=
pyrenoid, hs=hair scale, sc=scale,
lf=long flagellum and sf=short
flagellum.
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of a few 18S rRNA sequences with higher than 98%
similarity to the gene of RCC2288. Alignment of
these sequences with other Mamiellophyceae

sequences revealed diagnostic positions in both the
V4 and V9 hypervariable regions permitting Man-
toniella beaufortii and M. baffinensis to be

A

E

B

F

DC

0.2 µm 1 µm0.1 µm
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FIG. 5. Transmission electron
micrographs of whole mounts of
the new Mantoniella strains. (A–E)
M. beaufortii. (A) Whole cells of
strain RCC2288, indicating the
short flagellum (white arrow) and
(B) RCC2497. (C) Detached
flagellar spiderweb-like scales and
hair scales (black arrowhead).
(D) Detail of small tetraradial
body scale. (E) Imbricated scales
and hair scales covering the long
flagellum. A tuft of three hair
scales on the tip of the long
flagellum (black arrow) (F)
Detail of the tuft of hair scales
(black arrow). (G–H) M.
baffinensis RCC5418. (G) Small
and large body scales (black
arrows) and flagellar hair scales
(black arrowhead) and (H)
whole cell.

TABLE 3. Comparison of Mantoniella spp. scale types.

Species Flagellar scales Body scales

Mantoniella squamata Spiderweb-like heptaradial Spiderweb-like large octaradial and small rare tetraradial
Mantoniella antarctica Lace-like heptaradial Lace-like hexaradial and smaller heptaradial
Mantoniella beaufortii Spiderweb-like hexaradial Spiderweb-like large heptaradial and small rare tetraradial
Mantoniella baffinensis Spiderweb-like heptaradial Spiderweb-like large octaradial and small rare tetraradial

46 SHEREE YAU ET AL.



distinguished from other Mamiellophyceae, espe-
cially other Mamiella and Mantoniella species
(Figs. S1 and S2). Signatures from the V4 region
were clearer than from V9 due to the fact that for
some of the strains, the sequences did not extend
to the end of the V9 region (Fig. S2). In the V4
region, three signatures were observed, one com-
mon to both species (Fig. S1a), whereas the other
two (Fig. S1, b and c) differed between M. beaufortii
and baffinensis.

No clone library or metabarcode sequences
matched exactly Mantoniella baffinensis. In contrast,
three environmental sequences (KT814860,
FN690725, and JF698785) from clone libraries had
signatures similar to the M. beaufortii strains, two
from Arctic Ocean water (Fig. 7), including one
obtained during the MALINA cruise, and one from
ice originating from the Gulf of Finland. V4
metabarcodes corresponding to M. beaufortii were
found in the Ocean Sampling Day data set (Kopf
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et al. 2015) that includes more than 150 coastal
samples at a single station off East Greenland as well
as in three metabarcoding studies in the Arctic
Ocean, one in the Beaufort Sea performed during
the MALINA cruise (Monier et al. 2015), one from
Arctic sea ice (Stecher et al. 2016) where it was
found at three stations and one from the White Sea
(Belevich et al. 2017), also in the sea ice (Fig. 7).
No metabarcode corresponding to these two new
species were found in waters from either the South-
ern Ocean or off Antarctica (Fig. 7; Table S2). No
metabarcodes from the V9 region corresponding to
the two new species were found in the Tara Oceans
data set that covered mostly temperate and subtropi-
cal oceanic regions (de Vargas et al. 2015). These
data suggest that these species are restricted to
polar Arctic regions (although we cannot exclude
that they may be found in the future in the Antarc-
tic which has been under-sampled until now) and
are probably associated with sea ice although they

can be present in the sea water, and that M. beaufor-
tii is more wide spread than M. baffinensis.
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Supporting Information

Additional Supporting Information may be
found in the online version of this article at the
publisher’s web site:

Fig. S1. Alignment of the 18S rRNA gene V4
hypervariable region from Mantoniella beaufortii
and M. baffinensis strains (Red and Orange,
respectively), environmental clones (Blue) and
metabarcodes (Green) with a selection of
sequences from closely related Mamiellophyceae.
Sequence signatures diagnostic of the two new
species are indicated by boxes. The A region is
specific of both species while the B and C regions
differ between the two species.

Fig. S2. Alignment of the 18S rRNA gene V9
hypervariable region from Mantoniella beaufortii
and M. baffinensis strains (Red and Orange,
respectively) and environmental clones (Blue)
with a selection of closely related Mamiel-
lophyceae sequences. Sequence signatures diag-
nostic of M. beaufortii and M. baffinensis are
indicated by arrows.

Fig. S3. Maximum-likelihood phylogenetic tree
inferred from nuclear 18S rRNA sequences of
Mamiellophyceae. Monomastix opisthostigma was
used as an outgroup. Solid dots correspond to
nodes with significant support (> 0.8) for ML
analysis and Bayesian analysis (>0.95). Empty dots
correspond to nodes with non-significant support
for either ML or Bayesian analysis, or both. Gen-
Bank accessions of the 18S rRNA sequences
shown after the species name.

Fig. S4. Intramolecular folding pattern of the
ITS2 molecule of Mantoniella (RCC2288,
RCC2285, RCC2497 and RCC5418). The four
major helices are labeled as Helix I – Helix IV.
Blue dots represent either CBCs or hCBCs. Non-
CBCs (N – N ↔ N 9 N) are represented in
orange.

Fig. S5. Molecular signatures of Mantoniella spe-
cies revealed by comparison of ITS2 secondary
structures within Mamiellaceae. Signatures in
Helix III are shown in (A) and Helix IV in (B).
The conserved base pairs among the different
groups are numbered. CBCs and hCBCs are
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highlighted by solid and dotted arrows, respec-
tively. Hypervariable positions are marked by an
asterisk (*). Ellipsis (. . .) represent the other
clades and species of Micromonas. The YRRY
(pyrimidine-purine-pyrimidine) motif on the 50
side arm of Helix III is shown in bold black. Sin-
gle nucleotide substitutions are shown by grey
nucleotides. Identified homoplasious changes are
shown as parallelisms and reversals.

Table S1. Primers and PCR conditions used in
this study. Abbreviations: fwd – forward, rev. –
reverse, Temp. – Temperature.

Table S2. Metabarcoding datasets of the 18S
rRNA gene analyzed in this study for the presence

of Mantoniella beaufortii and M. baffinensis signa-
tures.

Table S3. Morphological characters in Mamiel-
lophyceae species.

Table S4. Pigment composition of Man-
toniella beaufortii (RCC2288) compared to a selec-
tion of green algae. Values are shown as a ratio of
pigment to Chl a concentration and percent con-
tribution to total carotenoids (in italics). See
Table S5 for the full names of the pigments.

Table S5. Pigments analyzed in this study.
LOD, limit of detection.

MANTONIELLA SPECIES FROM THE HIGH ARCTIC 51


