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Abstract

Photosynthetic microbial eukaryotes play a pivotal role as primary producers in the Arctic Ocean, where seasonal blooms within and
below the ice are crucial phenomena, contributing significantly to global primary production and biogeochemical cycling. In this study,
we investigated the taxonomic composition of sympagic algae and phytoplankton communities during the Arctic under-ice spring
bloom using metabarcoding of the 18S rRNA gene. Samples were obtained from three size fractions over a period of nearly three
months at an ice camp deployed on landfast ice off the coast of Baffin Island as part of the Green Edge project. We classified the
major sympagic and phytoplankton taxa found in this study into biogeographical categories using publicly available metabarcoding
data from more than 2800 oceanic and coastal marine samples. This study demonstrated the temporal succession of taxonomic groups
during the development of the under-ice bloom, illustrated by an overall transition from polar to polar-temperate taxa, particularly
in the smallest size fraction. Overlooked classes such as Pelagophyceae (genera Plocamiomonas and Ankylochrysis), Bolidophyceae
(Parmales environmental clade 2), and Cryptophyceae (Baffinella frigidus) might play a greater role than anticipated within the pico-
sized communities in and under the ice pack during the pre-bloom period. Finally, we emphasize the importance of microdiversity,
taking the example of B. frigidus, for which two ecotypes linked to pelagic and sea ice environments have been identified.
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Introduction
Photosynthetic microbial eukaryotes (“microalgae”) are the
major primary producers in the Arctic Ocean, dominating
both pelagic (phytoplankton) and ice-associated (sympagic)
primary production. Sympagic production tends to be lower
than phytoplankton production, accounting for 2%–10% of total
Arctic primary production [1]. Ice-associated algae undergo a
spring bloom that typically occurs a few months before that of
the phytoplankton community, when light intensity increases
and snow depth is sufficiently thin to allow light transmission
through the ice [2]. During the transition from ice cover to
open water, when phytoplankton biomass under the ice is low,
sympagic communities serve as a rich food source for both ice-
associated and early spring under-ice grazers, such as amphipods
and calanoid copepods, respectively [3].

The initiation of the under-ice phytoplankton bloom (UIB) typ-
ically coincides with the termination of the sympagic algal bloom
[4]. The stratification of the under-ice sea surface layer caused by

the influx of freshwater from ice and snow melt reduces convec-
tive nutrient transport to the ice, inducing nutrient limitation [5].
The decrease of snow cover also leads to changes in the physical
environment of the ice, resulting in photo-inhibition and brine
flushing of ice algae [2]. In the water, the increase in light resulting
from melting snow sets the conditions for the development of the
phytoplankton under-ice bloom [5].

The mosaic of Arctic surface marine environments (sea ice,
surface melt ponds, open water), each with a range of nutrient
and irradiance conditions, harbours complex heterogeneous com-
munities of ice algae and phytoplankton [6, 7]. This includes a
variable contribution of different size fractions pico (0.2–3 μm),
nano (3–20 μm), micro (> 20 μm) to total biomass and pri-
mary production [6]. Sympagic assemblages tend to be domi-
nated by micro-sized (> 20 μm) pennate diatoms of the genera
Nitzschia, Fragilariopsis, Navicula, and Cylindrotheca [6–8] and by the
strand-forming centric diatom Melosira and associated epiphytes
as a distinct bottom-ice community [9].
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Within the phytoplankton community, the Mediophyceae
diatoms Thalassiosira and Chaetoceros are reported as major
contributors [10]. Pico-sized Mamiellophyceae, including the
genera Micromonas, Bathycoccus, and Mantoniella, are also abundant
components of phytoplankton communities both under-ice
and in ice-free waters [11–14]. The bloom-forming nano-sized
haptophyte Phaeocystis pouchetii has also been reported to
dominate pelagic communities even under thick snow-covered
pack ice [15].

Major changes in the Arctic cryosphere are significantly alter-
ing the structure of sympagic and planktonic communities. The
most emblematic and well documented impact of climate change
in the Arctic is the rapid decline of sea ice cover in terms of
area, thickness and age [16–18], reducing the diversity of microbial
eukaryotes in sea ice [7]. The northward flow of relatively warm
North Atlantic water into the Arctic Ocean has not only amplified
the decline of sea ice [19], but also triggered poleward intrusion
of phytoplankton species of temperate origin into the European
Arctic [16, 20–22]. Warm anomalies in the Atlantic Water inflow
to the Barents Sea have been linked to a shift from diatom-
dominated phytoplankton communities to dominance by small
coccolithophores [23].

Compared to other oceans, the Arctic Ocean is anticipated to
experience the high species replacement with invading species
displacing locally extinct species [24]. Gains and losses of species
in response to the ongoing changes in Arctic habitats (e.g.
decrease in sea ice coverage and increased seawater temperature)
are likely to induce significant food web reorganization with
potential cascade effects [25, 26]. Microbial eukaryotes differ in
their thermal tolerance [27], dispersal capacity [28] and ability to
exploit new resources [29], which contributes to local abundance
and diversity patterns. Therefore, they are natural proxies of
community turnover and ecosystem shifts. An extensive Arctic
species list can be found in Poulin et al. [30]. Several studies have
provided baselines for pan-Arctic communities of dinoflagellates
[31], diatoms [32], and mixotrophic flagellates [33]. Two recent
studies have linked taxonomically annotated 18S rRNA sequence
“metabarcodes” from the Arctic to their biogeographical catego-
rization (i.e. Arctic-temperate, cosmopolitan, etc), thus providing
an overview of the biogeography of key Arctic phytoplankton taxa
[32, 34].

The present study sought to address two outstanding ques-
tions on the ice and under-ice spring bloom phenology. First, we
sought to identify the key microalgae taxa driving the community
dynamics. To address this question, we analyzed the community
structure of three size fractions both in the ice and in the water
using 18S rRNA gene metabarcoding. Second, we aimed to assess
the biogeographical patterns of ice and under-ice species over the
Arctic and beyond by comparing our data with those found in
over 2800 publicly available samples. Our results highlight the
role of previously overlooked Arctic groups like cryptophytes and
bolidophytes and point to a shift from polar to polar-temperate
taxa during the development of the under-ice bloom, notably in
the smallest size fraction.

Material and methods
Study area and sample collection
The field campaign was conducted from an ice camp estab-
lished on the western coast of Baffin Bay southeast of Qikiqtar-
juaq Island, Nunavut, Canada (67.4797◦N, 63.7895◦W, Fig. 1), on

Table 1. Stages of the Arctic spring bloom in Baffin Bay 2016
ice-camp following Ardyna et al. (2020).

Stage no. UIB stage Dates

Stage I Snow-covered 01 May – 03 June 2016
Stage II Snow-melt 03 June – 15 June 2016
Stage III Ice-melt 15 June – 18 July 2016

landfast sea ice, as part of the GreenEdgeproject. The ice camp was
situated away from the shallow shelf, where the water column
depth was 360 m. Sampling was carried out every two days
between 4 May - 18 July 2016 at an ice camp set up, spanning
periods of ice-covered to the point when waters were ice-free.
Bottom-ice was collected from two sections of ice cores: (i) the
bottom 0–3 cm (ICE_0) and (ii) 3–10 cm from the bottom (ICE_1)
of the core (Fig. 2). Under-ice water samples were collected using
Niskin bottles at four depths: (i) 1.5 m (WATER_1), (ii) 5–10 m
(WATER_2), (iii) 10–20 m (WATER_3), and (iv) 40–60 m (WATER_4)
(Fig. 2). Cores were collected using an 8 cm Jiffy corer, and cores
placed in sterile bags. Both water samples and cores were returned
to the shore based laboratory by snowmobile within a few hours of
collection. Ice slices were melted in 0.2 μm filtered seawater. From
each sampling depth, 3 L of water and 0.5 L of melted-ice were
pre-filtered with a 100 μm mesh and subsequently filtered with
a peristaltic pump through the following sets of polycarbonate
filters: 20 μm (47 mm), 3 μm (47 mm), and 0.22 μm (Sterivex®

filters). Filters were placed in cryotubes, and 1.8 ml of RNALater®

was added to either the filters or Sterivex®) units, which were
stored at −80◦C until processing.

Environmental and biological data
Variables characterizing the environmental conditions during the
time series such as snow and ice thickness, under-water photo-
synthetically active radiation (PAR). Biological indicators includ-
ing Chl a biomass and photosynthetic pico-nano cell counts were
used to group the samples into the three bloom stages described
by Ardyna et al. [35]: (I) snow-covered, (II) snow-melt and (III) ice-
melt (Table 1, Fig. 2). A brief description of the environmental data
used in this paper, and their sampling protocols, are detailed in the
Supplementary Information.

Species-level identification of diatoms using morphological
data was done using scanning electron microscopy (SEM) to com-
plement metabarcoding data in identifying taxa that lack refer-
ence sequences. Ice (100 ml) and water (200 ml) samples were
filtered through 0.8 μm size polycarbonate (Isopore or Nuclepore)
membranes using a vacuum pump (< 250 mm Hg) for scanning
electron microscopy. Samples were left to dry in an oven at 35◦C
for 1 hour and subsequently stored at room temperature.

DNA extraction, PCR amplification, and
sequencing processing
Samples for DNA extraction were selected from each stage of
bloom based on the evolution of Chl a and photosynthetic cell
abundance determined by flow cytometry (Figs. 2B, 2C). The
18S rRNA V4 hypervariable gene region was amplified with
the primers TAReuk454FWD1 and V4 18S Next.Rev [36]. PCR
purification, library preparation and sequencing was conducted
at the GeT-PlaGe platform of GenoToul (INRAE Auzeville,
France) using Illumina Miseq (2 × 250 bp). Detailed protocols
of nucleic acid extractions and PCR conditions are reported in
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Figure 1. Location of the ice camp on landfast sea ice near Qikiqtarjuaq Island on the western coast of Baffin Bay. Arrows indicate a simplification of
the counter-clockwise Atlantic-derived (red) and Arctic-derived (blue) water mass circulation, adapted from Tang et al. (2004).

the Supplementary Information. Sequences were processed with
scripts written in the R language [37] using the dada2 package
[38] as described in the Supplementary Information. Amplicon
sequence variants (ASVs) were taxonomically assigned using the
PR2 database version 5.0.1 (https://pr2-database.org, [39]) as a
reference. Trophic mode allocation was done using the database
of Schneider et al. [40]. All bioinformatic routines including the
sequencing processing, trophic mode allocation and culturability
are detailed in the Supplementary Information.

Biogeographical distribution of ASVs
To determine the biogeography of ASVs, we used version 2.0 of the
metaPR2 database [41], which contains 18S rRNA metabarcodes
from published studies re-processed with dada2 and annotated
with the PR2 reference sequence database. ASVs from the V4
region 18S rRNA gene were assigned based on their presence in
a total of 2874 marine samples (oceanic and coastal) (Table S1) as
polar (≥ 66◦N and ≥ 66◦S), temperate (23–66◦N and 23–66◦S) and
tropical (23◦S–23◦N) (Fig. S1).

ASVs from the present study and those from metaPR2 were
clustered (cASVs) if they showed 100% similarity in their over-
lap regions (see [41]). cASVs were then assigned to a biogeo-
graphical category (e.g. polar, temperate, cosmopolitan), based on

their occurrence in metaPR2 samples following the approach of
Supraha et al. [32] (Table 2). cASVs were assigned to a biogeogra-
phy category if at least 90% of the samples where they occurred
fell within the regions defined in Table 2. cASVs were assigned
as cosmopolitan if they were present in all three major regions
(polar, temperate, tropical) but did not have a clear dominance
in any region. cASVs that were present in less than five samples
were considered unallocated. Multiple samples from a single
geographical point (in particular from time series studies) were
considered as a single occurrence. In the rest of the paper, we refer
to cASV as ASV for simplicity.

Data analysis and visualization
Non-metric multidimensional scaling (NMDS) ordination of a
Bray–Curtis dissimilarity matrix was performed with phyloseq
[42]. ANOSIM (ANalysis Of SIMilarity) (package vegan, [43]) was
used to assess the influence of size fraction, substrate (ice and
water) and bloom phase on the community composition. Indicator
species analysis (indicspecies package, [44]) was performed on ASVs
within each size fraction in order to find significant association
between taxa and substrate (ice vs. water) and bloom stages (stage
I vs. stages II and III). Default IndVal index was used as a statistical
test with 9999 random permutations. The R packages used for
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Figure 2. Environmental variables and sampling through the three main stages of the under-ICE phytoplankton bloom. (A) Under-ICE PAR at 2 m
depth (Mol photons M− 2 d−1); (B) surface integrated Chl a concentrations (mg M− 2) from ICE (bottom 10 cm) and water column (top 60 m);
(C) Pico/nano-phytoplankton abundance (cells ml−1); (D) ICE and snow thickness (cm). ICE_0 and ICE_1 represent samples from the bottom 3 cm and
3–10 cm of ICE; (E) water samples collected at four levels. No data were available for ICE and snow thickness after July 08.

Table 2. Criteria for biogeography classification of ASVs presented in this study based on their occurrence in 2874 samples from public
available datasets gathered in metaPR2.

Biogeography Description ASV occurrence

Polar ASV mostly restricted to the Arctic and Antarctic Polar ≥ 90%
Polar-Temperate ASV present in the polar and temperate regions Polar + Temperate ≥ 90%
Temperate ASV mostly restricted to the temperate region Temperate ≥ 90%
Temperate-Tropical ASV present in the temperate and tropical regions Temperate + Tropical ≥ 90%
Tropical ASV mostly restricted to the tropical region Tropical ≥ 90%
Cosmopolitan ASV has a global distribution Polar, Temperate, Tropical > 0% each
Unallocated ASV is either unique to this study or has been found in less than five metaPR2 samples
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data wrangling and visualization are detailed in Supplementary
Information.

Results
Environmental parameters
The Green Edge Ice Camp took place in a landfast sea ice on the
western side of Baffin Bay south of Qikiqtarjuaq Island (Fig. 1)
and spanned periods of ice-covered to ice-free waters. PAR at 2 m
from the ice surface (ice-water interface) remained consistently
low during snow-covered stage I (Table 1), with values between
0.07–0.25 mol m−2 d−1 until mid-June (Fig. 2A). Concomitant with
the drop in surface albedo of snow, PAR increased from 2.7 to
10.2 mol m−2 d−1 between stages II and III. Bottom-ice Chl a con-
centrations and sympagic photosynthetic pico-nano (0.2–20 μm)
cell concentrations remained stable until the end of the snow-
melt period. Bottom-ice Chl a concentration peaked at 6.2 mg m−2

in early June, while photosynthetic pico-nano (0.2–20 μm) cell
concentration reached its maximum value (35 000 cells ml−1) by
the end of June. The sympagic photosynthetic community then
slowly declined towards the end of the sampling period during
stage III (Figs. 2B, 2C).

Under-ice Chl a concentration and pico-nano phytoplankton
cell abundance remained consistently low from May to mid-June
(Figs. 2B, 2C). Both parameters peaked (182 mg m−2 and 45 000
cells ml−1) during the first week of July, when the absence of snow
and the presence of melt ponds allowed light to increase (PAR
maximum was 10.2 μmol m−2, Fig. 2A), setting the conditions for
the development of the UIB.

Community diversity and structure
Sympagic and under-ice planktonic communities of microbial
eukaryotes were separated by size fractions (0.2–3 μm, 3–
20 μm and > 20 μm) and their diversity was assessed by
metabarcoding of the V4 region of 18S rRNA gene. In total, 428
ASVs were assigned to photosynthetic taxa. The ice algal and
phytoplankton communities were composed of 18 and 21 classes,
respectively. They included Bacillariophyceae, Mediophyceae,
Pelagophyceae, Chrysophyceae and Bolidophyceae from the divi-
sion Stramenopiles, Mamiellophyceae, Pyramimonadophyceae
and Chlorophyceae from Chlorophyta, Prymnesiophyceae from
Haptophyta and Cryptophyceae from Cryptophyta (Fig. S2).
Morphological identification using Scanning Electron Microscopy
of Bacillariophyceae and Mediophyceae taxa from both sympagic
(Fig. S3) and phytoplanktonic communities (Figs. S4 and S5) was
used to complement the metabarcoding data. Few genera and
species were identified by both methods (Tables S2, S3). Twenty
species were only identified by SEM, but not by metabarcoding,
for ice (9) and water (11). The majority of ASVs in this study had
no match to public sequences from verified cultures (Fig. S6).
Community analysis at the ASV level using NMDS and ANOSIM
showed that samples clustered according to size fractions along
the first axis and substrate (ice and water) along the second
axis (Table S4, Fig. S7). Community composition was significantly
different among the three stages of the UIB for both ice (R = 0.15;
P = .004) and water (R = 0.420, P = .001) (Table S4). Twenty-three key
taxa accounting for 75% of the total photosynthetic reads were
selected for analyses of community change across bloom stages
and size fractions (Fig. 3).

During the snow and ice covered stages (I and II), the sympa-
gic pico-sized community was dominated by the Cryptophyceae
Baffinella frigidus and an undescribed Cryptomonadales clade in
the 3–10 cm ice layer (ICE_1) and bottom 3 cm (ICE_0), respectively.

At the same time, in (ICE_0), Ankylochrysis (Pelagophyceae) and
Plocamiomonas (Pelagophyceae) co-dominated in the bottom ice
layer. During stage III, the Mamiellophyceae (Micromonas polaris)
was abundant in the 3–10 cm ice layer (ICE_1) (Fig. 3). Among pico-
sized phytoplankton, the dominant taxon during stage I belonged
to Parmales environmental clade 2 with a contribution increasing
with water depth (Fig. 3). From stage II onwards, it was replaced
by M. polaris and the haptophyte P. pouchetii. In the surface layer
(WATER_1), the cryptophyte B. frigidus, which was present in the
ice earlier, was abundant during stage II.

The nano-sized communities, both in the water and ice, were
dominated in terms of relative abundance and diversity by Bacil-
lariophyceae (pennate diatoms). In the ice, during stage I, a diverse
community of nano-sized pennate diatoms inhabited the 3–10 cm
layer (ICE_1) without clear dominance of any genus or clade
(Fig. 3). Within the bottom layer (ICE_0), Navicula and unassigned
Bacillariaceae ASVs co-dominated the community (Fig. 3) until
the beginning of stage II. From this point, several ASVs assigned to
undescribed pennate diatoms (Bacillariaceae) co-dominated the
nano-sized sympagic community until the end of the sampling
period. There was also a small contribution to the sympagic
community from the centric Mediophyceae species Attheya septen-
trionalis during the transition from stage II to III (Fig. 3). A pennate-
centric-pennate diatom temporal succession was observed for the
nanoplankton in the surface layer, featuring the genera Fragilariop-
sis (F. cylindrus), Thalassiosira and Pseudo-nitzschia. The haptophyte
P. pouchetii also contributed significantly to the nano-sized com-
munity in the water column during stage III.

The micro-sized ice community from stages I and II was also
dominated by undescribed Bacillariaceae diatoms, except for bot-
tom ice at the start of stage I when Thalassiosira nordenskioeldii
was the dominant taxon (Fig. 3). Microplanktonic diatoms were
co-dominated by genera and undescribed Bacillariophyceae and
Mediophyceae (Fig. 3). The diatom genus Thalassiosira (T. antarc-
tica and T. nordenskioeldii) increased its contribution in the sur-
face layer (WATER_1) during stage II, while Porosira had a high
contribution to the deep water layer community during stage I
(Fig. 3). Among pennate diatoms, Pseudo-nitzschia, Fragilaria and
undescribed Bacillariaceae dominated the microplanktonic com-
munity during stage II without a clear pattern in abundance
(Fig. 3).

Biogeography and microdiversity
We explored the occurrence of the ASVs found in this study
across 2874 marine samples selected from the metaPR2 database
(Fig. S1, Table S1) and classified them according to their latitudinal
occurrence (Table 2). A total of 200 ASVs, representing 82.5% of
the photosynthetic reads, could be assigned to a biogeographical
region (Fig. 4). Most of the assigned ASVs had polar and polar-
temperate distributions, with few temperate and cosmopolitan
ASVs (Fig. 4). The sympagic communities were dominated by polar
ASVs in all size fractions, and also harboured most of the unas-
signed ASVs. The pico-phytoplankton community was initially co-
dominated by polar and polar-temperate ASVs (Fig. S8), but as
the bloom developed, polar-temperate ASVs represented most of
the reads. In contrast, the nano fraction was dominated by polar-
temperate ASVs with no clear change over time. Finally, among
the micro-sized phytoplankton, polar ASVs were important at
almost all times, except during the last sampling week (stage III)
in surface waters (WATER_1 and 2), where polar-temperate ASVs
became dominant (Fig. S8).

We then used indicator species analysis to investigate whether
the 20 most abundant ASVs were associated with a specific
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Figure 3. Relative abundance of 18S V4 rRNA reads at the species level from 23 most abundant photosynthetic taxa across bloom stages I to III in ice
and water. These species represent 75% of all reads. Samples are sorted according to their size fractions: Micro (20–100 μm), nano (3–20 μm) and pico
(0.2–3 μm). Taxa with a minimum of 10% relative abundance of samples are annotated with a two character label. No ice samples were collected in
July when melt ponds were formed and the ice was unstable. Other blank columns represent samples lost during processing.

substrate (ice or water) or bloom stage. To facilitate pairwise
comparison, the samples from bloom stage I were considered as
“dark phase” and those from stages II and III as “light phase”
(Fig. 5), based on PAR levels (Fig. 2A). Twelve and nine ASVs were
significantly associated with ice and water, respectively. Over half
of the ice associated ASVs (7) were assigned as polar (Fig. 5A),
while those flagged as indicators of the water community were
equally split as polar, polar-temperate and unassigned (Fig. 5B).
Fifty percent of the ASVs flagged as indicators of ice or water
substrates had 100% matches to at least one culture sequence
from an algal culture (Figs. 5A, 5B). Only 2 ASVs were flagged
as indicators for the dark phase (the diatoms T. nordenskioeldii

ASV_e4c749ac0b and Porosira sp. ASV_4de55affda) (Fig. 5C) and 5
ASVs were significantly associated with the light phase (Fig. 5D).
Among these, 4 had a 100% match to at least one cultured algal
sequence (Figs. 5C, 5D). ASVs flagged as indicators from the gen-
era Baffinella and Thalassiosira that exhibit diversity at the species
or ASV level (Fig. 5) were further investigated (Fig. 6A).

The cryptophyte B. frigidus ASV_c699cb1809 (polar-temperate)
and ASV_f8124a0c4a (polar) are differentiated by a single base
pair (Fig. S9). Both were co-dominant in the ice samples, whilst the
former was dominant in the water samples (Figure6A). The polar
ASV_f8124a0c4a was flagged as an ice indicator (P < .001, Fig. 5A).
While the polar-temperate ASV_c699cb1809 was more abundant
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Figure 4. Latitudinal distribution of the metaPR2 samples where Green Edge ASVs were observed. Polar, polar-temperate, temperate, and cosmopolitan
refer to the biogeographic classification of the ASVs (Table 2. N indicates the number of assigned ASVs in each category. The major latitudinal
boundaries are illustrated by dashed lines: Arctic circle (66

◦
N), tropic of cancer (23

◦
N), tropic of Capricorn (23

◦
S) and Antarctic circle (66

◦
S).

in water samples (Fig. 6A), this ASV was not significantly associ-
ated with either ice or water (Fig. 5). The contribution of the ice
and polar ASV_f8124a0c4a increased in the water column during
the transition between stages II and III (Fig. 6A), possibly due to
the release of cells from the ice during melting.

Three Thalassiosira ASVs, flagged as indicators and with
distinct biogeographical allocation, exhibited a succession pattern
during the UIB (Figs. 6B-D). T. nordenskioeldii ASV_e4c749ac0b and
T. antarctica ASV_0e63043d86, both categorized as polar, were
flagged as dark and light bloom phase indicators, respectively
(Figs. 5C, 5D), while the polar-temperate T. aestivalis/T. pacifica
ASV_2976201d4c (T. aestivalis and T. pacifica share an identical V4
sequence, so both species names were used to refer to this ASV)
was associated with water (Figs. 5B). Based on read numbers, T.
nordenskioeldii ASV_e4c749ac0b was more abundant in the water
during the dark phase and then was replaced by T. antarctica
ASV_0e63043d86 at the start of the light phase (Figs. 6C, 6D).
Finally, the polar-temperate T. aestivalis/T.pacifica ASV_2976201d4c
became the dominant Thalassiosira ASV in the water as the under-
ice bloom developed (Fig. 6D).

Discussion
Taxa succession and diversity
The Green Edge ice camp time series documented the taxonomic
succession of sympagic and under-ice phytoplankton communi-
ties in southwestern Baffin Bay. During the snow-covered and
snow-melt stages, photosynthetic biomass, as indicated by Chl a
and chlorophyll fluorescing pico-nano (0.2–20 μm) cell concen-
trations, was detected both in and beneath the landfast sea ice
but did not increase as light did not increase during this period
(Fig. 2). Snow melt allowed more light to reach the water below
the ice, which was marked by an increase in biomass and number
of pico and nano phytoplankton cells (Fig. 2). Similar to other time
series studies under landfast ice [4], light availability and upper
water column stabilization were the key factors associated with

triggering the under-ice bloom during the Green Edge campaign
[5]. A similar trend was also reported during a simultaneously
occurring campaign in the marginal ice zone of Baffin Bay [45, 46].

Community analysis at the ASV level demonstrated that the
sympagic and under-ice planktonic communities were signifi-
cantly different between the three stages of the under-ice bloom
(Table S4). Sympagic and planktonic pennate diatoms are impor-
tant members of under-ice blooms and are able to use low-light
levels [47]. In the present study, pennate diatoms, in particular
raphid pennate genera such as Navicula, Nitzschia, Pseudo-nitzschia,
and ribbon forming genera such as Fragilariopsis and Fragilaria,
were more diverse than the other photosynthetic groups and
dominated both sympagic and planktonic nano/micro-sized com-
munities in terms of relative abundance through time (Fig. 3).
These taxa are commonly reported in bottom-ice samples [7, 30,
48]. In contrast, the increased contribution of the epiphytic centric
genus Attheya during snow melt (Fig. 2, Fig. 3) was consistent with
studies reporting the appearance of A. septentrionalis in bottom-ice
communities as light intensities increase through spring [49–51].

Arctic diatom assemblages are often described by their sea-
sonal succession pattern from pennate to centric species, linked
to different light requirements [6, 52]. Among nanoplanktonic
diatoms, a pennate-centric-pennate succession was observed in
the surface layer, where the relative abundance of the centric
diatoms Thalassiosira increased during stage II and receded dur-
ing stage III (Fig. 3). The succession observed at the ice camp
was, however, not observed in under-ice samples collected during
the Green Edge oceanographic campaign [46], which occurred
simultaneously offshore in central Baffin Bay [53]. The under-
ice community during the Green Edge oceanographic campaign
was co-dominated by centric and pennate diatoms, while centric
diatoms were associated with the development of the bloom in
the marginal ice zone and open waters [46, 54]. These varying
temporal dynamics within Baffin Bay highlight the differences
in bloom phenology consistent with the heterogeneity of Arctic
outflow shelves [55].
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Figure 5. Twenty most abundant photosynthetic ASVs in ice (A) and water (B) substrates, and UIB dark (stage I, C) and light (stages II + III, D) phases.
Symbol shape corresponds to biogeographical classification. ASVs in bold correspond to those with sequence matching 100% to PR2sequences
obtained from cultures. Colours correspond to division. The indicspecies statistical significance is shown as follows: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

Compared to diatoms, pico-sized sympagic and under-ice pho-
tosynthetic eukaryotes (≤ 3 μm) have received less attention [13,
56, 57]. Cryptophytes, represented by the genus Baffinella and an

undescribed Cryptomonadales clade, were among the dominant
taxa within the pico-sized sympagic community during the snow-
covered stage (Fig. 3). Cryptophytes are able to adapt to a range of
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Figure 6. Temporal evolution and geographical occurrence of ASVs assigned to (A) B. Frigidus, (B) T. Nordenskioeldii, (C) T. Antarctica, and (D) T. Aestivalis/
T. Pacifica. Left: ASVs read numbers across different bloom stages in the ice and water samples (all depths and size fractions combined). Center and
right: metaPR2 samples where the ASVs were detected. Dashed lines correspond to the polar circles and the tropics.

light intensities [58, 59]. A time series from the high Arctic Kanger-
luarsunnguaq fjord (Kobbefjord) on the west coast of Greenland,
also found cryptophytes and other flagellates dominating the

sympagic community when light was limited [60]. Also during
pre-bloom conditions (stage I), Bolidophyceae (Parmales environ-
mental clade 2), a group reported to be abundant in polar and
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subarctic regions from DNA sequences and microscope observa-
tions [61–63], were the dominant picoplanktonic taxa at all depths
(Fig. 3). The dominance of cryptophytes and bolidophytes within
the sympagic and under-ice planktonic communities under low
light regimes indicates their likely role as primary producers
during periods of heavy snow cover (winter and early spring).
Cryptophytes have been reported as a rich food source for both ice
and early season grazers [3, 64–66]. In contrast, the contribution
of Bolidophyceae to the polar food web has not been established,
although cells resembling the silicified Bolidophyceae have been
reported in fecal pellets of subarctic copepods [67, 68].

During the snow-melt stage, a shift in dominance from
Bolidophyceae to Mamiellophyceae, represented by the genus
Micromonas, was observed within the planktonic pico-sized
community, except in the surface water layer. The increase
in subsurface PAR (Fig. 2) combined with a slight increase in
water temperatures and in stratification [5], likely favoured
the growth of Micromonas. This is supported by the fact that
M. polaris CCMP2099 has a higher maximum growth rate (0.55
division. Day−1) than the cryptophyte B. frigidus CCMP2045 (0.40
division Day−1) when light is not a limiting factor [13]. Shorter-
term physiological experiments have also shown that the optimal
growth rates for Micromonas were also achieved at a slightly higher
temperature range (6◦C - 8◦C), than Baffinella (4◦C - 6◦C) [13, 69].

Along with M. polaris, P. pouchetii also dominated the under-
ice bloom pico-size community from the snow-melt stage to
the end of the time series (Fig. 3). This species is recognized as
an important member of the pan-Arctic under-ice community
during the spring-to-summer transition [6, 15, 70]. It has also been
reported in early blooms beneath snow-covered pack ice [71]. In
our data, a small increase in the abundance of Phaeocystis in the
nano-size community was observed during the early weeks of the
ice-melt stage (Fig. 3), which could be due to the formation of cell
aggregates [72] or of colonies in the late stages of the spring bloom.
Under high-light and low-nutrient conditions, such as those found
during the ice-melt stage [5], Phaeocystis can form polysaccharide-
based mucilaginous colonies that can be millimetres in diameter,
with mucilage presumable involved in energy storage and defence
against grazers [70, 73]. The P. pouchetii ASV obtained during the
Green Edge oceanographic campaign was flagged as an indicator
of the marginal ice zone and open water sectors within the
> 20 μm size fraction, corroborating our results [46].

The considerable amount of novel molecular diversity found
in this study emphasizes the need for additional research to
genetically characterize arctic taxa. This is illustrated by the fact
that most (14) of the diatom taxa observed by SEM lack sequence
information and therefore cannot be identified by metabarcoding
(Tables S2, S3, Figs. S3, S4 and S5). This parallels the observation
that among the 1000 genera catalogued by Fourtanier and Koci-
olek [74] and Fourtanier and Kociolek [75], only 197 have reference
18S rRNA sequence in the PR2 database [39]. Moreover 50% of
the most abundant ASVs in our study do not have a cultured
representative (Fig. 5), indicating that although culturing methods
have been able to capture some of the diversity among arctic
taxa [32, 76–78], difficulties remain for isolating and maintaining
diatoms in culture (Fig. S6), highlighting the need for renewed
culturing efforts and development of novel isolation methods.

Biogeography and niche preference
The poleward flow of warmer Atlantic and Pacific waters will
potentially induce an ecosystem shift in the Arctic Ocean towards
a more temperate state, marked by the intrusion of temperate
species [22, 79, 80]. Previous studies have linked taxonomically
annotated 18S rRNA sequence “amplicons or barcodes” found

in the Arctic with their global occurrence in an effort to detect
ongoing shifts within the (phyto)plankton community [32, 34]. In
the present study, the prevailing geographic distributions of most
of the ASVs for which it could be assigned (representing 82.5% of
the reads in our dataset) were polar (57.5%) and polar-temperate
(34%). This contrasts with a previous study by Ibarbalz et al.
[34] which reported, using different approaches (Swarm OTUs
vs. ASVs), that although abundant, only 12% of their OTUs were
represented by taxa with polar distribution. The high prevalence
of polar ASVs in our study may be attributed to several factors.
Firstly, the sample set of Ibarbalz et al. [34] only covers the Tara
Ocean expeditions (a couple of hundred samples) which is much
less extensive than ours (> 2800 samples), limiting the validity of
biogeographical inferences. Secondly, their study included Arctic
samples collected in the Atlantic and Pacific inflow shelves, where
a high number of non-polar barcodes were detected. In contrast,
our sampling site was located on the western coast of Baffin Bay,
a region characterized by the outflow of modified Pacific and
Arctic waters [6]. The under-ice water column at the ice camp
was dominated by Arctic Water advected southward along Baffin
Island [5]. Finally, in contrast to the study of Ibarbalz et al. [34],
the presence of sympagic communities and taxa present at the
transition between the late winter and early spring in our dataset
might have contributed to an increased number of polar barcodes.

In our study, most sympagic ASVs were classified as polar.
Some exceptions (39 of 306) corresponded to ASVs found at lat-
itudes below the polar circle from the Baltic Sea and Hudson Bay,
which are seasonally ice-covered [81]. The sympagic community
also exhibited more ASVs significantly associated with ice as a
substrate than water (Fig. 5). These ASVs may represent sea ice
specialists which can cope with the strong gradients of salinity,
temperature and light found in the ice [82]. For example, some
cryptophyte species like B. frigidus have been characterized as
euryhaline, growing at salinities ranging from 5 to 35 [69]. The B.
frigidus ASV_c699cb1809 and ASV_f8124a0c4a were 100% similar
to the sequences obtained from the strains CCMP2045 (GQ375264)
and RCC5289 (OR736128), isolated from Baffin Bay waters [69] and
sea ice, respectively [78]. The latter ASV (ASV_f8124a0c4a) was
flagged as an indicator of ice (Fig. 5A) and showed a restricted
polar distribution (Fig. 6) which suggests that it probably repre-
sents an ice ecotype. Additional studies addressing the intraspe-
cific variability in growth optima between ice and water isolates
are required for an in-depth characterization of the niche prefer-
ences and fitness of the cryptophyte genus Baffinella.

Another example of potential ice specialist taxon is repre-
sented by the polar ASV_58a35e6970 also flagged as an indicator
of the ice community (Fig. 5A). This ASV is 100% similar to the
sequence of the recently described Pelagomonadales species Plo-
camiomonas psychrophila, isolated from sea ice [83]. Metatranscrip-
tomic analysis has revealed that strain CCMP2097 of P. psychrophila
possesses specific adaptations to cold saline conditions, such as
those found in sea ice micro-environments. This includes differ-
ential expression of several antifreeze proteins, an ice-binding
protein, and an acyl-esterase involved in cold adaptation [84] and
the capacity to rapidly adjust to low salinity associated with ice
melt [85].

As the bloom developed, we observed a transition from
polar to polar-temperate ASVs in the smallest size fraction,
while polar ASVs represented by undescribed groups of pennate
(Bacillariophyceae) and centric (Mediophyceae) diatoms were
major contributors to the micro-sized planktonic community
across all bloom stages and nearly all depths (Fig. 3). Body
size plays an important role in determining spatial patterns
for planktonic organisms, although exact mechanisms are still
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unclear [86]. For example, some small-sized cells such as the
prasinophyte Bathycoccus have an extremely broad distribution
from the subtropics to the pole [12, 87]. In contrast, Richter
et al. [88] showed based on metagenomic data that smaller
size classes had more local distributions than larger ones. In
our data set, the predominance of polar ASVs within the micro-
sized planktonic communities might be explained by the lower
dispersal rate of larger cells compared to the pico- and nano-sized
taxa. Diatoms associated with sea ice in the Arctic have been
reported as endemic taxa [30, 89], and our results corroborate the
idea that Arctic endemism is also found for planktonic diatoms
[90], especially within the micro-plankton where less connection
between distant diatoms communities is expected.

A few ASVs, in low abundance, were assigned as temperate
(6) and cosmopolitan (11), some representing taxa with broad
biogeography signatures (Fig. 4). The cosmopolitan Phaeocystis
ASV_8050f737e4 was 100% similar to sequences obtained from
the species P. jahnii which was initially described from the
Mediterranean Sea [91] and reported in the warmer waters of the
southeastern East China Sea [92]. The ecological versatility (i.e.
broad geographic distribution with species found across several
gradients of temperatures and nutrient conditions) of this genus
stemming from their ability to grow mixotrophically [93, 94] aligns
well with suggestions of a shift towards Phaeocystis-dominated
blooms in future Arctic scenarios, which will have implications for
phytoplankton community structure and trophic energy transfer
[15, 95].

While barcodes found in the Arctic but occurring also else-
where in the metaPR2 global dataset may represent indicators
of species displacement within the Arctic planktonic commu-
nity, they also stress the limitation of using barcode sequences,
such as the variable regions of 18S rRNA gene, when describ-
ing biogeographic patterns of plankton species. The B. prasinos
ASV_4580ad6202 was assigned as cosmopolitan and although
the genus Bathycoccus is considered cosmopolitan, the analysis
of metagenomes [96], of nuclear genomes [87, 97] and of the
internal transcribed spacer 2 [98] have suggested the existence
of distinct Bathycoccus ecotypes and species, including a polar
genotype [97], all of which have identical 18S rRNA sequences and
therefore cannot be discriminated by metabarcodes from the V4
or V9 regions of the 18S rRNA gene. Among diatoms, the polar-
temperate ASV_2976201d4c represents at least two distinct Tha-
lassiosira species, T. pacifica and T. aestivalis, which share identical
18S rRNA V4 regions and can be only distinguished by scanning
electron microscopy. Indeed, T. pacifica was detected by SEM in our
samples while T. aestivalis was absent. The use of more resolu-
tive taxonomic markers, such as ITS or full rRNA gene, capable
of distinguishing cryptic genotypes combined with microscopy
approaches such as SEM will be required for deciphering complex
biogeography patterns [90].

Finally, a large proportion of ASVs (53%), especially originating
from the sympagic community, remained unassigned, probably
due to the lack of sufficient metabarcoding datasets from ice envi-
ronments (Fig. S8) in the metaPR2 database. Some of our barcodes
had a strong occurrence in the Arctic (Fig. 4). However, due to the
limited number of datasets available from the Antarctic, we opted
for a conservative approach by not separating the polar biogeog-
raphy categories into Arctic and Antarctic categories. Some of our
barcodes may indeed represent bipolar taxa, [99–101] while others
maybe truly restricted to the Arctic. Only more extensive sampling
from Antarctic regions and multigene phylogenies will be able to
solve this question.
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