www.sciencemag.org/cgi/content/full/315/5809/253/DC1



# Supporting Online Material for

# Picobiliphytes: A Marine Picoplanktonic Algal Group with Unknown Affinities to Other Eukaryotes

Fabrice Not,\* Klaus Valentin, Khadidja Romari, Connie Lovejoy, Ramon Massana, Kerstin Töbe, Daniel Vaulot, Linda Medlin\*

\*To whom correspondence should be addressed. E-mail: lkmedlin@awi-bremerhaven.de (L.M.); not@icm.csic.es (F.N.)

> Published 12 January 2007, *Science* **315**, 253 (2007) DOI: 10.1126/science.1136264

#### This PDF file includes:

Materials and Methods SOM Text Figs. S1 and S2 Tables S1 to S8 References

#### Supporting Online Material: Material and Methods

#### 1. Sequence analysis

Full length sequences from the picobiliphytes were obtained following Bezsteri et al. 2005 (S4). These sequences were imported into the ARB database, and aligned with its secondary structure model (S1). A selection of species representing each of the six major groups of eukaryotes (table S1) were used to construct a molecular phylogeny to place the picobiliphytes phylogenetically. Positions that occurred in at least 50 % of the taxa were selected for phylogenetic analysis. This resulted in a database of 174 taxa and 1,825 positions (available upon request from LKM). This data set was subjected to the Modeltest program (Version 2.2, ref. S5) in which the AIC criterion selected the general time reversal model of evolution with the following rate parameters: Lset Base=(0.2450 0.124 0.2609), Nst=6, Rmat=(1.0000 2.2127 1.0000 1.0000 3.1084), Rates=gamma, Shape=0.6199, Pinvar=0. A Mr Bayes analysis (http://morphbank.ebc.uu.se/mrbayes/), version 3.1, was run in two parallel runs saving every 1000th tree. We increased the complexity of our MrBayes analysis, which initially used a gamma correction and 6 rate categories with one million generations with 4 chains; then 1.5 million generations with 4 chains; then one million generations with 6 chains; and finally 1.5 million generations with 6 chains with increased temperature to encourage more swapping between chains. A consensus tree was made from the last 100 trees and presented in Fig. 1. A weighted MP analysis was performed in PAUP\* (*S6*). For this analysis, a maximum parsimony tree (MP) was obtained in the following sequential analyses. The data set was weighted with a rescaled consistency index and analyzed with heuristic search using 1000 random additions with a NNI branch swapping algorithm. The resulting suboptimal trees were used as input into a second analysis using a TBR branch swapping algorithm to obtain an optimal shortest tree. This tree was loaded into MacClade and the trees rearranged forcing our picobiliphytes into a polytomy with each major lineage of eukaryotes. The trees from each rearrangement were used to constrain another MP analysis and the resulting trees from the constrained analysis were then tested to determine if they were significantly different from the best tree

obtained in the MP analysis. In addition, all other eukaryotes were combined into a polytomy and using a reverse constraint analysis, we tested the non-monophyly of our picobiliphytes. The resulting trees were used as input for the Kishino-Hasegawa Test (table S3). Distance analysis was performed using PAUP\*. Dissimilarity values, based on pairwise comparisons of sequences (S7), were transformed into distances using models determined from the Modeltest program. Branching order stability was estimated by bootstrap analysis as above. Stability of the branching order was estimated using bootstrap analysis (BT) (*S8*) for 100 replicates for both the distance and the weighted MP trees because the data set was so large.

#### 2. Probe design and tests

The two probes PICOBI01 and PICOBI02 were designed to target environmental sequences using the ARB software package (*S1*, tables S4, S5). The 18S rDNA database used together with this software is currently maintained by the Oceanic Plankton team at the Station Biologique de Roscoff and contains over 30,000 aligned sequences from Eukaryotes, Bacteria and Archaea. Because the picobiliphyte isolates do not exist in culture, we were not able to perform any positive hybridization tests for these probes. However, using 40% formamide (based on the GC % and positions of mismatches) to adjust stringency, we tested the probes on a range of cultured species (table S6). Among them the species belonging to the divisions Rhodophyta and Cryptophyta were the closest relatives available in culture. This experiment aimed at unveiling some potential unspecific labelling. Results did not show any non-specific hybridization (table S6). However, we observed positive signals on natural samples. For these reasons we believe our probes are specific for the picobiliphytes.

#### 3. Tyramide Signal Amplification – Fluorescent In Situ Hybridization (TSA-FISH)

Contributions of picobiliphytes to the total picoeukaryotic community are presented in table S8. These results were obtained by the application of the TSA-FISH technique using the two probes PICOBI01 and PICOBI02 on natural 3  $\mu$ m filtered seawater samples harvested at different dates at the Roscoff ASTAN sampling site.

Abundance of cells (cells ml<sup>-1</sup>) belonging to the picobiliphyte clades and to the total picoeukaryotic community were determined by TSA-FISH following Not et al. (*S2*), with the probes PICOBI01, PICOBI02, and a mix of three general probes (EUK1209R, CHLO01, and NCHLO02), respectively.

Because the picobiliphytes exhibited phycobilin-like pigments, we wanted to assess their contribution to the orange fluorescing cells present in the environment (table S7). Cells from the estuarine sampling station Roscoff Dourduff were simultaneously enumerated and sorted by flow cytometry based on their orange fluorescence (2,253 cells sorted in 3 hours). These cells were then concentrated on Anodisc filters by filtration and prepared for TSA-FISH (*S2*). Cell abundances for the picobiliphytes were estimated individually by TSA-FISH with the probes PICOBI01 and PICOBI02. Fluorescent *in situ* hybridizations have been done in replicate for both probes on the same filter (table S7).

#### 4. Solid phase cytometry (ChemScan)

Helgoland surface samples were collected on a cruise with the RV Uthörn from 30/05-02/06/2006. 1 L samples were collected and subsequently fractionated with a 10 µm, 5 µm and 3 µm polycarbonate filter of 47 mm diameter (Millipore, USA) and finally filtered onto 0.2 µm polycarbonate filters (Millipore, USA) for TSA-FISH and solid phase cytometry (*S3*).

A Chem*Scan* RDI (Chemunex, France) was used for solid phase cytometry. An overlapping scan of the whole filter membrane surface was carried out with an argon laser at a wavelength of 488 nm to detect cells with FITC labelled tyramides. The computer software (MatLab, Matworks, Natick, Mass.), automatically applies different discrimination criteria based on optical characteristics like particle size and signal shape and therewith enables the differentiation between autofluorescent particles, unlabelled cells and labelled target cells.

The positive counted signals are shown as a representation of the filter on the computer screen, termed a scan map (fig. *S2*). The filters were validated

microscopically directly after the scan with an epifluorescence microscope, which is connected to the Chem*Scan* and equipped with a motorized stage. After highlighting a signal with the cursor on the scan map, the motorized stage moves to the corresponding position on the filter and a validation of the counted signals is performed optically.

#### Supporting Online Material: Results of the phylogenetic analyses

Using a Bayesian analysis of the 18S rRNA sequences from organisms representing each of six major groups of eukaryotes (table S1) aligned by secondary structure in the ARB alignment program with increasing complexity of parallel runs of the MrBayes (MB) program, we found that the runs did not converge on the same tree. Initial analyses placed picobiliphytes sister to haptophytes or as an independent group. Complex analyses found picobiliphytes either sister to haptophytes (posterior probabilities or pp = 55) or to a cryptophyte/katablepharid clade (pp = 100) (Fig. 1). Similarities in the pigment composition and a DAPI staining organelle in the plastid may provide support for the latter sister relationship. Some sister relationships in our analysis, e.g., Heterokonta and Cercozoa, are likely artifacts because this is a single gene phylogeny. We do not recover all sister relationships found in concatenated phylogenies (S10), e.g., because we do not have living cells for additional genes, or similar sister relationships found in rate weighted phylogenies from rRNA genes, e.g., as in van de Peer et al. (S11). Therefore, we used the rRNA gene to test if picobiliphytes fall inside another major eukaryotic group. The independence of our lineage was assessed using the Kashino-Hasagawa test in PAUP (12) (table S3). All trees forcing picobiliphytes into other eukaryote groups were significantly different from the best tree (table S3) and the only group that could be interpreted as being a possible sister to our picobiliphytes is the rhodophytes because the number of steps from the best tree to this constrained tree is the shortest. Bootstrap analyses using a weighted Maximum Parsimony analysis and Neighbor-joining analysis with gamma corrections established from Modeltest found high support for all the terminal taxa but little or no support for sister relationships. A consensus of the last ten trees in our most complex MB analysis showed a weak sister relationship with the rhodophytes (pp = 75).

### **Supporting Figures**

**Fig. S1**. Use of probes PICOBI01 and PICOBI02 using TSA-FISH to detect marine picobiliphytes. a. Cells from Roscoff Astan (RA, September 26, 2001) and Roscoff Dourduff (RD, September 17, 2002) with overlaid epifluorescence pictures showing the nucleus stained with DAPI in blue (UV excitation), and probe fluorescence in green (blue excitation). The red fluorescence likely originated from the autofluorescence of a phycobilin-containing plastid under blue excitation, such as those from the red algae and the cryptophytes (see b). The paler yellow fluorescence in some of the pictures is residual chlorophyll. **b.** A cell of the cryptophyte *Rhodomonas salina* hybridized with the PICOBI02 probe. The absence of a green color indicates that the probe did not label the cell. The plastid that contains phycobilins shows a clear red autofluorescence similar to that in the cells from the natural samples (a).



**Fig S2.** Application of probes PICOBI01 and PICOBI02 using TSA-FISH to detect marine picobiliphytes using the Chem*Scan* machine from the less than 3  $\mu$ m fraction sample from two locations near Helgoland in the German Bight. The sample is filtered, hybridized with the probe, and scanned by the Chem*Scan* laser for fluorescent signals. The figure on the left represents all fluorescent signals on the filter, and the figure on the right displays only the cells recognized by the probe. A set of discriminate values provided by the Chem*Scan* analysis package based on optical characteristics of the generated signals like wavelengths, signal shape and particle size eliminates all fluorescent signals that cannot be associated with a probe signal. + denotes positive cells subsequently checked in the microscope to verify the fluorescent signal of the cells. A more detailed use of the Chem*Scan* machine can be found in ref *S3*.





## **Supporting Tables**

**Table S1.** Species names, accession numbers, and taxonomic affiliations of full length sequences used for the phylogenetic analysis presented in Fig. 1. The taxonomic affiliation follows the revised eukaryotic classification in Adl et al. (*S9*).

| Species                    | Accession Nu | nber Super Group | First Rank if known |
|----------------------------|--------------|------------------|---------------------|
| Acanthamoeba castellanii   | AF114438     | Amoebozoa        | Amoebozoa           |
| Acanthamoeba pustulosa     | AF019050     | Amoebozoa        | Amoebozoa           |
| Hartmannella vermiformis   | X75513       | Amoebozoa        | Amoebozoa           |
| Entamoeba dispar           | Z49256       | Amoebozoa        | Amoebozoa           |
| Entamoeba histolytica      | X65163       | Amoebozoa        | Amoebozoa           |
| Naegleria gruberi          | M18732       | Amoebozoa        | Amoebozoa           |
| Neoparamoeba pemaquidensis | AF371968     | Amoebozoa        | Amoebozoa           |
| Balamuthia mandrillaris    | AF019071     | Amoebozoa        | Amoebozoa           |
| Phreatamoeba balamuthi     | L23799       | Amoebozoa        | Amoebozoa           |
| Vahlkampfia lobospinosa    | M98052       | Amoebozoa        | Amoebozoa           |
| Dictyostelium discoideum   | K02641       | Amoebozoa        | Mycetozoa           |
| Physarum polycephalum      | X13160       | Amoebozoa        | Mycetozoa           |
| Mesostigma viride          | AJ250109     | Archeplastida    | Chlorophyta         |
| Trebouxia asymmetrica      | Z21553       | Archeplastida    | Chlorophyta         |
| Ulva rigida                | AJ005414     | Archeplastida    | Chlorophyta         |
| Chlorella minutissima      | AB006046     | Archeplastida    | Chlrorophyta        |

| Oogamochlamys gigantea      | AJ410465 | Archeplastida   |
|-----------------------------|----------|-----------------|
| Chlamydomonas reinhardtii   | M32703   | Archeplastida   |
| Cyanoptyche gloeocystis     | AJ007275 | Archeplastida   |
| Glaucocystis nostochinearum | X70803   | Archeplastida   |
| Gloeochaete wittrockiana    | X81901   | Archeplastida   |
| Bangia atropurpurea         | L36066   | Archeplastida   |
| Chondrus crispus            | Z14140   | Archeplastida   |
| Gracilaria lemaneiformis    | M54986   | Archeplastida   |
| Porphyra suborbiculata      | AB013180 | Archeplastida   |
| Porphyridium aerugineum     | L27635   | Archeplastida   |
| Arabidopsis thaliana        | X52322   | Archeplastida   |
| Ginkgo biloba               | D16448   | Archeplastida   |
| Glycine max                 | X02623   | Archeplastida   |
| Magnolia tripetala          | AF206956 | Archeplastida   |
| Marchantia polymorpha       | AB021684 | Archeplastida   |
| Zamia pumila                | M20017   | Archeplastida   |
| Ammonia beccarii            | U07937   | Chromoalveolata |
| Apusomonas proboscidea      | L37037   | Chromoalveolata |
| Colpoda inflata             | M97908   | Chromoalveolata |
| Paraurostyla weissei        | AJ310485 | Chromoalveolata |

Chlorophyta Chlorophyta Glaucocystophyta Glaucocystophyta Glaucocystophyta Rhodophyta Rhodophyta Rhodophyta Rhodophyta Rhodophyta Streptophyta Streptophyta Streptophyta Streptophyta Streptophyta Streptophyta Alveolata/Ciliata Alveolata/Ciliata Alveolata/Ciliata Alveolata/Ciliata

Stylonychia pustulata Tetrahymena nanneyi Trithigmostoma steini Vorticella convallaria Alexandrium fundyense Amblyospora sp. Amoebophrya sp. Amyloodinium ocellatum Cryptosporidium parvum Dinophysis norvegica Gonyaulax spinifera Gymnodinium catenatum Gymnodinium mikimotoi Babesia bigemina Eimeria mitis *Gregarina niphandrodes* Hepatozoon canis Sarcocystis dispersa Sarcocystis muris Theileria youngi

M14600 M98016 X71134 AF070700 U09048 U68474 AF069516 AF080096 L16996 AF239261 AF022155 AY421785 AF009131 X59607 U40262 AF129882 AF176835 AF120115 M34846/M64244 AF245279

Chromoalveolata Chromoalveolata

Alveolata/Ciliata Alveolata/Ciliata Alveolata/Ciliata Alveolata/Ciliata Alveolata/Dinoflagellata Alveolata/Dinoflagellata Alveolata/Dinoflagellata Alveolata/Dinoflagellata Alveolata/Dinoflagellata Alveolata/Dinoflagellata Alveolata/Dinoflagellata Alveolata/Dinoflagellata Alveolata/Dinoflagellata Apicomplexa Apicomplexa Apicomplexa Apicomplexa Apicomplexa Apicomplexa Apicomplexa

| Theileria cervi                       | AF086804 | Chromoalveolata | Apicomplexa |
|---------------------------------------|----------|-----------------|-------------|
| Chilomonas paramecium                 | L28811   | Chromoalveolata | Cryptophyta |
| Cryptomonas pyrenoidifera             | AJ421147 | Chromoalveolata | Cryptophyta |
| Cryptomonas paramecium                | AJ715468 | Chromoalveolata | Cryptophyta |
| Cryptomonas pyrenoidifera nucleomorph | AJ715473 | Chromoalveolata | Cryptophyta |
| Hanusia phi                           | U53126   | Chromoalveolata | Cryptophyta |
| Geminigera cryophila                  | AB058368 | Chromoalveolata | Cryptophyta |
| Geminigera cryophila nucleomorph      | U53123   | Chromoalveolata | Cryptophyta |
| Goniomonas truncata                   | U03072   | Chromoalveolata | Cryptophyta |
| Guillardia theta nucleomorph          | AF165818 | Chromoalveolata | Cryptophyta |
| Chrysochromulina polylepis            | AJ004866 | Chromoalveolata | Haptophyta  |
| Emiliania huxleyi                     | X82156   | Chromoalveolata | Haptophyta  |
| Pavlova virescens                     | AJ515248 | Chromoalveolata | Haptophyta  |
| Pavlova salina                        | L34669   | Chromoalveolata | Haptophyta  |
| Phaeocystis globosa                   | X77476   | Chromoalveolata | Haptophyta  |
| Achlya bisexualis                     | M32705   | Chromoalveolata | Heterokonta |
| Allomyces macrogynus                  | U23936   | Chromoalveolata | Heterokonta |
| Bacillaria paxillifer                 | M87325   | Chromoalveolata | Heterokonta |
| Blastocystis hominis                  | U51151   | Chromoalveolata | Heterokonta |
| Caecitellus parvulus                  | AF174367 | Chromoalveolata | Heterokonta |

| Cafeteria roenbergensis     | AF174364 | Chromoalveolata | Heterokonta    |
|-----------------------------|----------|-----------------|----------------|
| HE001005.33                 | EF050072 | Chromoalveolata | Heterokonta    |
| Chattonella verruculosa     | AY788947 | Chromoalveolata | Heterokonta    |
| Epipyxis pulchra            | AF123298 | Chromoalveolata | Heterokonta    |
| Heterosigma akashiwo        | U41650   | Chromoalveolata | Heterokonta    |
| Labyrinthuloides minuta     | L27634   | Chromoalveolata | Heterokonta    |
| Mallomonas papillosa        | M55285   | Chromoalveolata | Heterokonta    |
| Nannochloropsis granulata   | AF045041 | Chromoalveolata | Heterokonta    |
| Paraphysomonas foraminifera | AB022864 | Chromoalveolata | Heterokonta    |
| Phytophthora megasperma     | X54265   | Chromoalveolata | Heterokonta    |
| Proteromonas lacertae       | U37108   | Chromoalveolata | Heterokonta    |
| Thraustochytrium kinnei     | L34668   | Chromoalveolata | Heterokonta    |
| Tribonema aequale           | M55286   | Chromoalveolata | Heterokonta    |
| Ulkenia profunda            | AB022114 | Chromoalveolata | Heterokonta    |
| Uroglena americana          | AF123290 | Chromoalveolata | Heterokonta    |
| Lagenidium giganteum        | X54266   | Chromoalveolata | Hetrokonta     |
| Laminaria angustata         | AB022818 | Chromoalveolata | Hetrokonta     |
| Mallomonas caudata          | U73228   | Chromoalveolata | Hetrokonta     |
| Skeletonema pseudocostatum  | X85394   | Chromoalveolata | Hetrokonta     |
| Katablepharis japonica      | AB231617 | Chromoalveolata | Katablepharids |

| Leucocryptos marina               | AB194980 | Chromoalveolata | Katablepharids |
|-----------------------------------|----------|-----------------|----------------|
| Giardia intestinalis isolate BAG1 | AF199448 | Excavata        | Diplomonadida  |
| Spironucleus muris                | X84231   | Excavata        | Diplomonadida  |
| Giardia intestinalis              | AF473852 | Excavata        | Dipolomonidae  |
| Astasia longa                     | AF112871 | Excavata        | Euglenozoa     |
| Bodo saliens                      | AF174379 | Excavata        | Euglenozoa     |
| Bodo caudatus                     | X53910   | Excavata        | Euglenozoa     |
| Dimastigella trypaniformis        | X76495   | Excavata        | Euglenozoa     |
| Euglena gracilis                  | M12677   | Excavata        | Euglenozoa     |
| Trypanosoma cruzi                 | AF245381 | Excavata        | Euglenozoa     |
| Coronympha octonaria              | U17504   | Excavata        | Parabasalidea  |
| Amblyospora connecticus           | AF025685 | Opistokonta     | Fungi          |
| Anurofeca richardsi               | AF070445 | Opistokonta     | Fungi          |
| Aspergillus avenaceus             | AB008395 | Opistokonta     | Fungi          |
| Basidiobolus ranarum              | D29946   | Opistokonta     | Fungi          |
| Candida aaseri                    | AB013564 | Opistokonta     | Fungi          |
| Delitschia didyma                 | AF242264 | Opistokonta     | Fungi          |
| Dermocystidium salmonis           | U21337   | Opistokonta     | Fungi          |
| Eupenicillium crustaceum          | D88324   | Opistokonta     | Fungi          |
| Microsporidium prosopium          | AF151529 | Opistokonta     | Fungi          |

| Neurospora crassa          | X04971        | Opistokonta | Fungi      |
|----------------------------|---------------|-------------|------------|
| Psorospermium haeckelii    | U33180        | Opistokonta | Fungi      |
| Rhinosporidium seeberi     | AF158369      | Opistokonta | Fungi      |
| Septata intestinalis       | L19567        | Opistokonta | Fungi      |
| Sphaeroforma arctica       | Y16260        | Opistokonta | Fungi      |
| Thalassicolla nucleata     | AF057742      | Opistokonta | Fungi      |
| Trichosporon asteroides    | AB001729      | Opistokonta | Fungi      |
| Udeniomyces megalosporus   | D31657        | Opistokonta | Fungi      |
| Artemia salina             | X01723        | Opistokonta | Metazoa    |
| Diaphanoeca grandis        | L10824        | Opistokonta | Metazoa    |
| Drosophila melanogaster    | M21017/M29800 | Opistokonta | Metazoa    |
| Homo sapiens               | U13369        | Opistokonta | Metazoa    |
| Leucosolenia sp.           | AF100945      | Opistokonta | Metazoa    |
| Littorina obtusata         | X94274        | Opistokonta | Metazoa    |
| Mnemiopsis leidyi          | L10826        | Opistokonta | Metazoa    |
| Mus musculus               | X82564        | Opistokonta | Metazoa    |
| <i>Obelia</i> sp.          | Z86108        | Opistokonta | Metazoa    |
| Acanthocoepsis unguiculata | L10823        | Rhizaria    | Acantharea |
| Acanthometra sp.           | AF063240      | Rhizaria    | Acantharea |
| Chaunacanthid sp.          | AF018158      | Rhizaria    | Acantharea |

| Symphyacanthid sp.                 | AF063242 | Rhizaria | Acantharea          |
|------------------------------------|----------|----------|---------------------|
| Cercomonas ATCC50318               | U42450   | Rhizaria | Cercozoa            |
| Cercomonas longicauda              | AF101052 | Rhizaria | Cercozoa            |
| Chlorarachnion reptans             | U03477   | Rhizaria | Cercozoa            |
| Euglypha rotunda                   | X77692   | Rhizaria | Cercozoa            |
| Paulinella chromatophora           | X81811   | Rhizaria | Cercozoa            |
| Chlorarachnion reptans             | X70809   | Rhizaria | Chloroarachniophyta |
| Chlorarachnion reptans nucleomorph | U03275   | Rhizaria | Chloroarachniophyta |
| Gymnochlora stellata               | AF076171 | Rhizaria | Chloroarachniophyta |
| Chloraranion sp. nucleomorph       | U58510   | Rhizaria | Chloroarachniophyta |
| Sorites orbiculus                  | AJ132369 | Rhizaria | Foraminiferea       |
| Acrosphaera sp.                    | AF091148 | Rhizaria | Polycystinea        |
| Siphonosphaera cyathina            | AF091145 | Rhizaria | Polycystinea        |
| Uncultured Polycystinea            | AF382824 | Rhizaria | Polycystinea        |
| Cryptotermes domesticus            | AB032215 | unknown  | Parabasalidea       |
| BL000921.8                         | AY426835 | unknown  | Picobiliphytes      |
| HE000427.214                       | DQ222872 | unknown  | Picobiliphytes      |
| HE000803.72                        | DQ222873 | unknown  | Picobiliphytes      |
| HE001005.148                       | DQ222874 | unknown  | Picobiliphytes      |
| NW414.27                           | DQ060524 | unknown  | Picobiliphytes      |

| NOR46.24     | DQ060526 | unknown | Picobiliphytes |
|--------------|----------|---------|----------------|
| NW617.02     | DQ060525 | unknown | Picobiliphytes |
| OR0004.159   | DQ222875 | unknown | Picobiliphytes |
| RA000907.33  | DQ222876 | unknown | Picobiliphytes |
| RA000907.54  | DQ222877 | unknown | Picobiliphytes |
| RA001219.38  | DQ222878 | unknown | Picobiliphytes |
| RA000907.18  | DQ222879 | unknown | Picobiliphytes |
| RA010613.144 | DQ222880 | unknown | Picobiliphytes |

| Clone libraries                     | Eukaryotic clones | Picobiliphyte clones | % of picobiliphyte |
|-------------------------------------|-------------------|----------------------|--------------------|
| Year, month, location               |                   |                      | clones             |
| 2000, March, HE*                    | 46                | 0                    | 0                  |
| 2000, April, HE*                    | 94                | 1                    | 1.1                |
| 2000, April, RA*                    | 82                | 1                    | 1.2                |
| 2000, April, OR#                    | 64                | 4                    | 6.3                |
| 2000, June, RA*                     | 42                | 2                    | 4.8                |
| 2000, August, HE*                   | 103               | 1                    | 1                  |
| 2000, September, RA*                | 40                | 7                    | 17.5               |
| 2000, September, $BL^{\diamond}$    | 71                | 1                    | 1.4                |
| 2000, October, HE*                  | 73                | 2                    | 2.7                |
| 2000, December, HE*                 | 36                | 0                    | 0                  |
| 2000, December, RA <sup>•</sup>     | 34                | 2                    | 5.9                |
| 2000, December, $BL^{\diamond}$     | 106               | 0                    | 0                  |
| 2001, February/March, HE*           | 86                | 0                    | 0                  |
| 2001, February/March, BL $^{\circ}$ | 81                | 0                    | 0                  |
| 2001, April, RA <sup>◆</sup>        | 47                | 0                    | 0                  |
| 2001, May, RA*                      | 41                | 0                    | 0                  |
| 2001, June, RA*                     | 41                | 2                    | 4.9                |
| 2001, June, $\mathrm{BL}^\diamond$  | 81                | 0                    | 0                  |
| 2002, August, NW01 $^{\vee}$        | 90                | 3                    | 3.3                |
| 2002, August, NW08 $^{\oplus}$      | 70                | 1                    | 1.4                |
| 2002, August, Z59^                  | 228               | 28                   | 12.3               |

 Table S2. Relative abundance of picobiliphyte sequences in clone libraries

\* HE = Helgoland, 54°11'N, 7°54'E.(5) \* RA = Roscoff ASTAN, 48°46'N, 3°56'E. (4) <sup>6</sup> BL = Blanes Bay, 41°40'N, 2°48'E. (6) # OR = Orkney Islands. (5) ^ Z59 = Norwegian Sea, 76°19'N, 3°59'E. (7) <sup>v</sup> NW01 = Canada Basin of the Arctic Ocean, 75°59'N, 156°52'W. (7) <sup>⊕</sup>NW08 = Canada Basin of the Arctic Ocean, 76°46'N, 148°57'W. (7)

Table S3. Results of Kishino-Hasegawa test where the length of a tree with the enforced polytomy of the picobiliphytes with each major eukaryotic group was tested against the best tree where the picobiliphytes was an independent lineage. The monophyly of the picobiliphytes was also tested using a reverse constraint analysis against all eukaryotes in a single clade.

| Tree              | Length | <u>Length</u><br>difference | s.d.(difference)<br>e | t       | P*       |
|-------------------|--------|-----------------------------|-----------------------|---------|----------|
| Best Tree         | 40741  |                             |                       |         |          |
| Cryptophytes      | 41774  | 1033                        | 69.24223              | 14.9186 | < 0.0001 |
| Chlorophytes      | 41295  | 554                         | 38.96773              | 14.2169 | < 0.0001 |
| Glaucocystophytes | 42346  | 1605                        | 117.60304             | 13.6476 | < 0.0001 |
| Discicristates    | 42349  | 1608                        | 120.58334             | 13.3352 | < 0.0001 |
| Haptophytes       | 42037  | 1296                        | 98.73351              | 13.1262 | < 0.0001 |
| Entamoebae        | 41506  | 765                         | 58.75924              | 13.0192 | < 0.0001 |
| Cercomonads       | 41348  | 607                         | 47.62931              | 12.7443 | < 0.0001 |
| Apicomplexa       | 41209  | 468                         | 39.48443              | 11.8528 | < 0.0001 |
| Stramenopiles     | 41644  | 903                         | 78.57431              | 11.4923 | < 0.0001 |
| Opistokonts       | 41070  | 329                         | 44.72071              | 7.3568  | < 0.0001 |
| Rhodophytes       | 40775  | 34                          | 5.77536               | 5.8871  | < 0.0001 |
| Monophyly         | 49736  | 8995                        | 346.98441             | 25.9234 | < 0.0001 |

\* Probability of getting a more extreme T-value under the null hypothesis of no difference between the two trees (two-tailed test). All values were significantly different at P < 0.05.

Table S4. *In silico* specificity of probe PICOBI01. Clone names, length, and taxonomic affiliation of sequences tested. In addition to the picobiliphyte full length sequences presented in this study, partial sequences available in GenBank, which are at present undetermined but likely represent picobiliphytes, are also shown. Nature and position of mismatches on the closest full-length 18S rRNA non-target sequence/species are also indicated..

| PICOBI01                   |             |                |            | 5'- GCG TGA TGC CAA AAT CCG -3'             |
|----------------------------|-------------|----------------|------------|---------------------------------------------|
| Target                     |             |                |            | 3'- CGC ACU ACG GUU UUA GGC -5'             |
| Sequence name              | length (bp) | Taxonomy       | Acc number | Position of mismatches on closest sequences |
| HE000803.72                | 1812        | picobiliphytes | AY343928   | 3'5'                                        |
| HE000427.214               | 1732        | picobiliphytes | DQ222872   | 3'5'                                        |
| NW414.27                   | 1776        | picobiliphytes | DQ060524   | 3'5'                                        |
| RA000907.18                | 1834        | picobiliphytes | DQ222879   | 3'5'                                        |
| RA001219.38                | 1785        | picobiliphytes | DQ222878   | 3'5'                                        |
| NW617.02                   | 1779        | picobiliphytes | DQ060525   | 3'5'                                        |
| RA000907.54                | 1784        | picobiliphytes | DQ222877   | 3'5'                                        |
| ENI47296.00159             | 381         | picobiliphytes | AY938310   | 3'5'                                        |
| ENI42482.00158             | 543         | picobiliphytes | AY938048   | 3'5'                                        |
| ENI42482.00072             | 573         | picobiliphytes | AY938005   | 3'5'                                        |
| ENI40076.00318             | 632         | picobiliphytes | AY937616   | 3'5'                                        |
| BB01_42                    | 593         | picobiliphytes | AY885047   | 3'5'                                        |
| RA000907.60                | 546         | picobiliphytes | AY295523   | 3'5'                                        |
| RA001219.38                | 543         | picobiliphytes | AY295551   | 3'5'                                        |
| RA001219.56                | 543         | picobiliphytes | AY295566   | 3'5'                                        |
| RA000907.6                 | 548         | picobiliphytes | AY295522   | 3'5'                                        |
| RA000907.54                | 546         | picobiliphytes | AY295518   | 3'5'                                        |
| RA000907.23                | 405         | picobiliphytes | AY295495   | 3'5'                                        |
| RA000907.21                | 548         | picobiliphytes | AY295493   | 3'5'                                        |
| RA000907.18                | 547         | picobiliphytes | AY295489   | 3'5'                                        |
| RA000609.19                | 548         | picobiliphytes | AY295445   | 3'5'                                        |
| RA000609.13                | 547         | picobiliphytes | AY295441   | 3'5'                                        |
| RA000412.151               | 546         | picobiliphytes | AY295385   | 3'5'                                        |
| NOR46.29                   | 1763        | picobiliphytes | DQ060523   | 3' <b>T</b> 5'                              |
| RA000907.33                | 1840        | picobiliphytes | DQ222876   | 3'C5'                                       |
| NOR50.52                   | 1780        | picobiliphytes | DQ060527   | 3' <b>TC</b> 5'                             |
| Lophothalia hormoclados    | 1677        | Rhodophyta     | AF373216   | 3' <b>A</b> G G                             |
| Clostridium cellulolyticum | 1642        | Bacteria       | X71847     | 3' <b>TGT</b> -5'                           |
| Linderina pennispora       | 1753        | Fungi          | AF007538   | 3'5'                                        |
| Palmaria palmata           | 1771        | Rhodophyta     | Z14142     | 3' <b>C- GG- G</b> 5'                       |

**Table S5.** *In silico* specificity of probe PICOBI02. Clone names, length, and taxonomic affiliation of sequences tested. In addition to the picobiliphytes' full length sequences presented in this study, partial sequences available in GenBank are also shown. Nature and position of mismatches on the closest full-length 18S rRNA non-target sequence/species are also indicated.

| PICOBI02               |        |                 |          | 5'- ATA TGC CCG TCA AAC CGT -3'   |
|------------------------|--------|-----------------|----------|-----------------------------------|
| Target                 |        |                 |          | 3'- UAU ACG GGC AGU UUG GCA -5'   |
| Sequence name          | length | Taxonomy        | Acc      | Position of mismatches on closest |
|                        | (bp)   |                 | number   | sequences                         |
| NOR46.24               | 1788   | picobiliphytes  | DQ06052  | 3'5'                              |
|                        |        |                 | 6        |                                   |
| RA010613.144           | 1783   | picobiliphytes  | DQ22288  | 3'5'                              |
|                        |        |                 | 0        |                                   |
| OR000415.9             | 1804   | picobiliphytes  | DQ22287  | 3'5'                              |
|                        |        |                 | 5        |                                   |
| HE001005.148           | 1795   | picobiliphytes  | DQ22287  | 3'5'                              |
|                        |        |                 | 4        |                                   |
| RA010613.40            | 550    | picobiliphytes. | AY29570  | 3'5'                              |
|                        |        |                 | 6        |                                   |
| BL000921.8             | 1803   | picobiliphytes  | AY42683  | 3'C T5'                           |
|                        |        |                 | 5        |                                   |
| Trypanosoma congolense | 2217   | Euglenozoa      | AJ009145 | 3'AAG -5'                         |
| Trypanosoma congolense | 2240   | Euglenozoa      | AJ223563 | 3'AAAG -5'                        |
| <i>Trypanosoma</i> sp. | 2229   | Euglenozoa      | AJ009169 | 3'AT -GG -5'                      |
| Branchiostoma floridae | 1778   | Metazoa         | M97571   | 3'- <b>-T T G C</b> -5'           |
| Philonema sp.          | 1749   | Metazoa         | U81574   | 3' CG CC 5'                       |

**Table S6.** Roscoff Culture Collection (RCC: http://www.sb-roscoff.fr/Phyto/RCC/) strains that have been tested using Tyramide Signal Amplification-Fluorescent *In Situ* Hybridization with probes PICOBI01 and PICOBI02. Negative hybridizations for all strains used suggest no unspecific labeling from the probes. The number of mismatches to each probe is listed for each strain.

| Class          | Species                      | RCC strain | PICOBI01   | PICOBI02   | Hybridization |
|----------------|------------------------------|------------|------------|------------|---------------|
|                |                              | number     | mismatches | mismatches | results       |
| Chlorophyceae  | Dunaliella tertiolecta       | 6*         | 10         | 13         | -             |
| Prasinophyceae | Micromonas pusilla           | 114        | 8          | 12         | -             |
| Prasinophyceae | Micromonas pusilla           | 451        | 8          | 10         | -             |
| Prasinophyceae | Ostreococcus tauri           | 116        | 5          | 12         | -             |
| Prasinophyceae | Pseudoscourfieldia cf.marina | 261        | 9          | 10         | -             |
| Cryptophyceae  | Rhodomonas salina            | 20*        | 7          | 8          | -             |
| Cryptophyceae  | Rhodomonas baltica           | 350*       | 7          | 10         | -             |
| Cryptophyceae  | Hemiselmis sp.               | 439        | 7          | 10         | -             |
| Cryptophyceae  | Hemiselmis sp.               | 660*       | 6          | 10         | -             |
| Bangiophyceae  | Porphyridium aerugineum      | 652        | 9          | 10         | -             |
| Bangiophyceae  | Rhodella maculata            | 655*       | 8          | 12         | -             |
| Bolidophyceae  | Bolidomonas pacifica         | 205*       | 10         | 13         | -             |
| Pelagophyceae  | Pelagomonas calceolata       | 100*       | 11         | 12         | -             |

<sup>\*</sup>Accession numbers DQ009772, AF508274, U53128, AJ007284, AB045608, AF123595 and U14389, respectively, were used to represent RCC strains for which no 18S rDNA sequence is available.

Table S7. Contribution of picobiliphytes to orange fluorescing cells sorted from a sample taken on September 22, 2004 at the estuarine Dourduff station (close to the Roscoff Astan sampling site, 48°38'N, 3°51'W) in the English Channel. The original concentration of orange fluorescing cells was 322 cells ml<sup>-1</sup>.

| Probes              | Probe positive cells (cells ml <sup>-1</sup> ) * | % of orange fluorescing cells (cells ml-1) * |
|---------------------|--------------------------------------------------|----------------------------------------------|
| PICOBI01            | 59-54                                            | 18-17                                        |
| PICOBI02            | 96-142                                           | 30-44                                        |
| PICOBI01 + PICOBI02 | 155-196                                          | 48-61                                        |

\*Cell abundances for picobiliphytes estimated by TSA-FISH, values for the two replicates are given (replicate 1 – replicate 2).

Table S8. Contribution of picobiliphytes to the 3 µm fractionated picoeukaryotic community at the Roscoff Astan, (RA) sampling station in the English Channel as estimated with TSA-FISH and flow cytometry. Samples were filtered, and each filter was cut into sectors and two were hybridized to each probe. Positive controls using universal probes, EUK1209R, CHLO01, and NCHLO02 and no probe controls were made on different sectors of the filter.

| Sample    | Total          | Orange                      | Pr           | obe   | Pro                       | obe   | Sum of Probes             | % of pico- | % of orange |
|-----------|----------------|-----------------------------|--------------|-------|---------------------------|-------|---------------------------|------------|-------------|
|           | picoeukaryotes | fluorescing cells           | PICC         | OBI01 | PICC                      | DBI02 | PICOBI01 &                | eukaryotes | fluorescing |
|           | (cells ml-1) # | (cells ml <sup>-1</sup> ) * | (cells ml-1) |       | (cells ml <sup>-1</sup> ) |       | PICOBI02                  |            | cells       |
|           |                |                             |              |       |                           |       | (cells ml <sup>-1</sup> ) |            |             |
|           |                |                             | Piece        | Piece | Piece                     | Piece |                           |            |             |
|           |                |                             | 1            | 2     | 1                         | 2     |                           |            |             |
| RA010305* | 4,804          | n.a.                        | 21           | 20    | 0                         | 0     | 21                        | 0.4        | n.a.        |
| RA010926* | 6,693          | 98                          | 42           | 29    | 63                        | 22    | 79                        | 1.2        | 80.6        |
| RA011207* | 4,224          | 209                         | 42           | 37    | 42                        | 14    | 68                        | 1.6        | 32.5        |
| RA020122* | 4,590          | 187                         | 43           | n.a.  | 22                        | n.a.  | 65                        | 1.4        | 34.8        |
| RA020307* | 3,927          | 119                         | 21           | n.a.  | 21                        | n.a.  | 42                        | 1.1        | 35.3        |
| Average   | 4,848          | 153                         | 34           | 29    | 30                        | 12    | 55                        | 1.1        | 45.8        |

\* Sampling date (year/month/day). Hybridizations showing no positive results (for both probes) were performed on the following summer samples: RA010412, RA010530, RA010628, RA010731, RA010814.. # Cell abundances for picobiliphytes and for the total picoeukaryotes estimated by probes.

\* Abundances of cells with orange fluorescence estimated by flow cytometry. n.a. data not available..

## **Supporting references**

- 1. W. Ludwig et al., Nucleic Acids Res. 32, 1363 (2004).
- 2. F. Not, N. Simon, I. C. Biegala, D. Vaulot, Aquat. Microb. Ecol. 28, 157 (2002).
- 3. K. Töbe, G. Eller, L. K. Medin, J. Plankton Res. 7, 643 (2006).
- 4. B. Beszteri, E. Acs, L. K. Medlin, *Protist* **156**, 317 (2005).
- 5. D. Posada, K. A. Crandall, Bioinformatics 14, 817 (1998).
- 6. W. P. Maddison, D.R. Maddison, Analysis of phylogeny and character evolution. Version 3. Sinauer Associates, Sunderland, Massachusetts (1992).
- 7. W. M. Fitch, E. Margoliash, *Science* **155**, 279 (1967)
- 8. J. Felsenstein, Evolution **39**, 783 (1985)
- 9. S. M. Adl et al., J. Eukaryot. Microbiol. 52, 399 (2005)
- 10. D. Moreira, H. Le Guyader, H. Phillippe, Nature 405, 69 (2000).
- 11. Y. Van de Peer, et al., J. Mol. Evol. 51, 565 (2000).