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Highlights 
Knowledge of the functional diversity of 
protists is crucial for understanding their 
responses to, and influences on, the 
environment. 

Functional characterizations of protist 
species are scattered in the literature, 
making it challenging to synthesize them 
into ecological and evolutionary insights. 

Recently developed environment- and 
taxon-specific trait databases are a 
strong foundation for studies of protist 
functional diversity, but efforts remain 
fragmented and their broader utility is lim-
ited by a lack of standardization. 

We argue that a unified trait database for 
protists is timely, achievable, and would 
catalyze transformative research on 
their biodiversity, ecology and evolution.
Protists comprise the vast majority of eukaryotic genetic and functional diversity. 
While they have traditionally been difficult to study due to their small size and var-
ied phenotypes, environmental sequencing studies have revealed the stunning 
diversity and abundance of protists in all ecosystems. Protists are key primary 
and secondary producers across many biomes, with ecological specializations 
that range from mutualism to parasitism, complex predation behaviors, 
mixotrophy, detritivory, and saprotrophy. Current genomic and transcriptomic 
approaches provide valuable insights into protist diversity at the genetic level, 
but they fall short in capturing the morphological and behavioral traits critical 
for understanding the functional roles of protists in ecosystems. This knowledge 
gap hinders our ability to answer important questions about protist functional di-
versity, including how protist functional groups will respond to environmental 
change. In this opinion article, we advocate adopting a traits-based approach 
for studying protist diversity and developing a trait database for protists to sup-
port this goal. By integrating examples of recent work characterizing protist func-
tional diversity using a range of approaches, we emphasize the opportunities 
that trait databases offer and propose strategies for moving towards a trait-
based framework to guide future research in protist ecology and evolution. 
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A growing need for a traits-based approach in protistology 
Protists (see Glossary) are key components of the microbial world, holding major evolutionary 
and ecological significance. Through more than two billion years of evolutionary history, protists 
have populated the entirety of the eukaryotic tree of life, spanning seven to ten major evolutionary 
supergroups – with only two of them including all animals, plants, and fungi [1]. Protists are 
increasingly recognized for their functional roles in terrestrial and aquatic environments (including 
extreme habitats) [2–4], and as symbionts of healthy and diseased plants and animals [5]. Protists 
are key contributors to CO2 fixation [6,7], mediate energy transfer between smaller and larger 
organisms, and participate in decomposition and nutrient recycling [8]. Thus, through the produc-
tion, transformation, and export of organic matter, protists play a crucial role in sustaining life, 
regulating biogeochemical cycles, and influencing climate regulation in all biomes on Earth. 

While our understanding of protist biodiversity has expanded considerably since the use of 
classical microscopy to modern DNA-based surveys, these advances have focused on the 
taxonomic richness and distribution of protist lineages [9,10]. We argue that to gain a deeper 
knowledge of protist ecology and evolution, we must also consider their functional diversity – 
particularly to better understand how protist activities influence ecosystems across space and 
time, and how their functional diversity may respond to the ongoing climate and environmental 
crises [11]. 
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The functional diversity of protists is shaped by their staggering variety of traits and modalities 
(Figure 1, Box 1; and see Table S1 in the supplemental information online). Organismal sizes span 
several orders of magnitude, and their shapes and motility are driven by various arrangements of 
flagella, cilia, or pseudopodia, with many taxa producing elaborate exoskeletons or shells [12]. 
Lifestyles encompass free-living,  symbiotic,  and  parasitic  forms [13], and trophic strategies 
range from phagotrophy to diverse types of mixotrophy to autotrophy [14]. Primary producers 
rely on diverse nutrient uptake systems, and some species produce toxic or otherwise 
ecosystem-disruptive blooms [15]. Consumers have feeding mechanisms ranging from passive 
filtration to the use of weapon-like structures [16,17]. These few examples of protist trait diversity 
highlight the need for linking their taxonomy with functional traits, as functional diversity shapes 
both responses to and influences on the environment [18–20]. 

While the need for bridging taxonomic and functional diversity is evident, we lack a unified trait-
based diversity framework for all protists. By contrast, trait databases have been instrumental 
in yielding crucial insights into the ecology and evolution of animals and plants [21–23], or more 
recently, prokaryotes [24,25]. We argue that there is an urgent need to collect protistan trait infor-
mation at the species level and to establish a common ontology of traits that could enable the
ed 
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Figure 1. Protist functional diversity. A schematic representation of selected functional traits in protists that contribute to 
ecosystem functioning. Protist drawings were adapted from [81]. 
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Box 1. Some important traits to include in protist trait databases 

We highlight traits and modalities that can commonly be extracted from the literature. These and other less frequently mea-
sured traits (e.g., growth, grazing and resource acquisition rates) are relevant for a species’ ecological fitness and its con-
tributions to ecosystem functioning. Many species exhibit phenotypic plasticity driven by environmental conditions or life-
cycle polymorphy, manifested as a range of values in continuous traits or as different modalities in categorical traits. This list 
is not comprehensive and Table S1 provides additional traits, modalities, and references. 

Size. 

Usually measured as cell length and width. It may be expressed as area or biovolume when combined with cell shape. Size 
influences resource uptake and trophic interactions. In phototrophs, uptake rate per unit of cell surface area is higher in 
smaller cells. In phagotrophs, cell size tends to set prey size range, although there are many exceptions. 

Cell cover. 

A protective layer that may reduce palatability, limit predation, affect buoyancy, or prevent cellular desiccation. Cells may 
be naked, harbor scales, be encased in mucus or a shell, or possess a skeleton. Composition (e.g., organic, silica, calcite, 
or strontium sulfate) links protists to biogeochemical cycles. 

Motility. 

Cellular movement via structures like vacuoles, flagella, and pseudopodia. Motility enhances resource access, affects 
boundary-layer exchanges, predator avoidance, habitat preferences, and dispersal. Motility is often stage-specific in poly-
morphic life cycles. Modalities include: sessile, attaching, floating, gliding, dwelling, swimming. 

Colony formation. 

Some protists are solitary or can form colonies depending on life-cycle stage or environmental conditions. These can deter 
predators, improve buoyancy control, and enhance resource renewal around the cell. Colony forms include: contained in a 
self-produced matrix or mucus, attached (e.g., chains, networked), multicellular life-cycle stage. 

Plastid presence and origin. 

Plastids may be absent, acquired (kleptoplastidic, or via endosymbionts), or constitutive (innately produced). 

Nutritional mode. 

Protists may acquire resources via osmotrophy, saprotrophy, myzocytosis, phagotrophy, phototrophy or 
photophagotrophy. Phagotrophs use diverse mechanisms (e.g. filter feeding or raptorial feeding using peduncles, pallium 
veils, etc). Nutritional modes link to ecosystem roles (e.g., primary or secondary producer, decomposer) and resource spe-
cialization (e.g., live prey, detritus). 

Symbiosis. 

Stable biological associations with one or more species. Interactions influence community dynamics and biogeochemical 
fluxes. Depending on the outcomes for the host and the partner, interactions may include mutualism, commensalism, 
amensalism, or parasitism. 

Resting stage. 

Dormancy is present in different forms among some protists. It confers tolerance to stress, aids in dispersal, and prolongs 
survival. 

Glossary 
DNA metabarcoding: a  method  
involving high-throughput DNA 
sequencing of a targeted, taxonomically 
useful marker (for protists, usually the V4 
or V9 hypervariable region of the 18S 
rRNA gene) from environmental 
sample s.
Metagenomics: high-throughput 
sequencing of total environmental DNA 
to characterize the taxonomic 
composition and functional diversity of 
microbial communities. Sequencing 
data can be assembled and binned into 
metagenome-assembled genomes 
(MAGs). 
Metatranscriptomics: sequencing of 
total RNA from environmental samples 
to study gene expression profiles and 
active metabolic functions within 
microbial communities at the time of 
sampling. 
Modality: a subcategory within a 
broader categorical trait. Each trait can 
encompass multiple modalities that 
describe distinct variations of the trait. 
For example, the trait motility may 
include modalities such as sessile, 
attached, gliding, and swimming. 
Ontology: a structured framework for 
representing knowledge in which 
biological concepts are formally defined 
using a controlled vocabulary, and the 
relationships between terms are 
specified. 
Protist: an informal name given to any 
eukaryote that is not a plant, animal, or 
fungus – usually a unicellular and 
microscopic species. Typical examples 
include diatoms, dinoflagellates, 
amoebozoans, and ciliates. 
Trait: functional traits are measurable 
features that can affect the organism's 
capability to proliferate. Traits can be 
morphological, behavioral, physiological, 
or related to life-history. Examples 
include cell size, motility, and ingestion 
method.
development of a comprehensive, unified trait database for protists. Such a resource will be 
critical for adopting a trait-based approach for the study of protist ecology and evolution, includ-
ing in predictive models, thus unlocking new research directions (see Outstanding questions). 

Current approaches in protist functional diversity 
The study of protist organismal biology and functional diversity has a rich history, from early 
microscope-based descriptions to modern integrative approaches. These efforts have character-
ized protist species individually, based on traits such as cell size and shape, intracellular content, 
motile structures, life-history, and feeding strategies [26,27]. Today, classical light microscopy
Trends in Microbiology, Month 2025, Vol. xx, No. xx 3
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can be integrated with advanced techniques, such as 3D imaging or expansion microscopy, to 
study intracellular space [28], fluorescence in situ hybridization to infer symbiotic interactions or 
predator–prey relationships [29,30], and cryo-electron microscopy for quantifying nutrient uptake 
and potential impacts on biogeochemical cycles [31,32]. Similarly, experimentation on physiology 
(e.g., growth rates) and species interactions that rely on cultivation [33] are being accelerated by 
new techniques that combine high-throughput cell isolation (e.g., using fluorescence-activated 
cell sorting or microfluidics) and co-cultivation [34]. These approaches have resulted in a substan-
tial, and still growing, body of morphological, physiological, and behavioral data. However, trans-
lating scattered, species-specific knowledge into comprehensive insights at the community, 
ecosystem, or macroevolutionary scale remains a major challenge.

Many investigations at the community level are conducted using high-throughput molecular 
methods, notably DNA metabarcoding. This approach has unveiled numerous undescribed 
taxa and enabled the study of protist communities across space and time [9,10]. However, 
while metabarcoding provides deep insights into taxonomic diversity, linking genetic sequences 
to ecological roles remains difficult. To move beyond taxonomy, metabarcoding must be 
complemented with functional data. 

To overcome the limitations of metabarcoding, genome-scale approaches such as genomics 
and metagenomics have been widely used to study the functional diversity of prokaryotes. 
However, applying these methods has proven more challenging for protists. Early expectations 
regarding methodological transferability to protist research were rapidly undermined by the chal-
lenges posed by the larger size and complexity of eukaryotic genomes. In turn, transcriptomic 
analyses of protist cultures, and more recently metatranscriptomics of communities, have 
yielded insights into gene expression and aided in the reconstruction of metagenomic-
assembled genomes [35–37]. These findings unveiled molecular mechanisms underpinning 
key functions such as bacterivory [38], and differences in molecular strategies across taxonomic 
[39] and functional groups [40]. However, both metagenomics and metatranscriptomics face 
important limitations. Chief among these is the scarcity of reference genomes and functional 
annotations for microbial eukaryotes, resulting in large numbers of poorly characterized genes 
in environmental surveys and the difficulty of linking community-aggregated gene patterns to spe-
cific species. Moreover, gene expression is regulated by post-transcriptional and translational 
processes, as well as substrate availability, making it difficult to relate gene presence and expres-
sion directly to quantitative ecosystem processes [41]. Importantly, protist functional diversity is 
mainly exerted at the cellular level, with trophic roles and specialization being principally driven 
by cellular structures, behaviors, or interactions, which we have yet to decipher from gene 
expression [42,43]. 

In this context, trait databases represent a crucial bridge, linking studies of protist morphology, 
physiology, and behavior to broad patterns at the community and ecosystem scale. To this 
end, several context-specific databases have been developed, synthesizing relevant traits across 
freshwater [44,45], marine [46,47], and soil environments [48,49]. Other databases focus on spe-
cific traits such as nutrient utilization [50], trophic strategies [51], and ecological interactions 
[52,53], or particular taxonomic groups [54–56]. Such databases have provided many novel in-
sights into protist biology, including evidence for functional redundancy in protist communities 
[46], the interplay between abundance, species size,  nutrition,  and  trophic  regime  in  marine
coastal ecosystems [57], the functional succession of soil communities following glacier retreat 
[58], and improved characterization of potential prey–predator interactions [59]. Trait databases 
are also a required interface for population and ecosystem modeling, as models need observa-
tional data for both calibration and validation [14,60,61].
4 Trends in Microbiology, Month 2025, Vol. xx, No. xx
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Most existing trait databases have been developed independently, and thus, new frameworks 
have frequently introduced their own sets of traits, modalities, and definitions. Such fragmenta-
tions have hindered the integration and widespread adoption of these resources. We argue 
that unifying efforts and compiling trait data of protist species is highly feasible and represents 
a great avenue to explore their functional diversity. We present a compilation of traits and modal-
ities extracted from existing protist trait databases, alongside their definitions and potential rele-
vance to protist ecology and functional roles across ecosystems and biomes (Box 1, Table S1 
in the supplemental information online). Through this effort, we seek to catalyze a community-
wide initiative to develop a shared ontology of protist traits – one that effectively represents 
their functional diversity across biomes. In the following section, we suggest key steps required 
to achieve this objective and discuss the broader perspectives it offers, both within protistology 
and in the wider fields of ecology and evolution. 

Towards a trait-based framework: challenges and opportunities 
The recent proliferation of environment- and taxon-specific trait databases reflects the growing 
interest in understanding protist ecology and evolution through the lens of functional diversity. 
To fully embrace a trait-based framework and enable protist-wide and cross-ecosystem analy-
ses, we propose developing an ontology that standardizes key morphological and functional 
traits of protists into a shared, structured vocabulary (Figure 2). Such an ontology will enable 
researchers to speak the same language by harmonizing terminologies, descriptions, measure-
ment units, and hierarchical relationships among trait attributes. Different databases currently 
employ inconsistent definitions and measurement approaches for the same terms. For instance, 
the commonly used trait 'size' can refer to linear measurements (e.g., length, width, and depth), 
volume (e.g., estimated spherical diameter), and/or categorical size classes depending on the 
dataset [46,51,55]. A shared ontology will help lay the foundation for the development of stan-
dardized databases of protist traits, promoting the interoperability of datasets and enhancing 
protist research across domains, and laying the foundation for a protist-wide trait database. 
The flexible, interconnected structure of this ontology would also accommodate adding trait 
terms over time as the need arises, similar to the strategy used for the Environment Ontology 
(ENVO) [62]. Establishing a shared trait ontology will certainly require cross-disciplinary collab-
orations – including specialists in various taxonomic groups (e.g., ciliates, dinoflagellates, 
amoebae) and environments (e.g., aquatic, terrestrial). Such a community-driven effort will 
lay the groundwork for a unified, and FAIR (findable, accessible, interoperable, reusable) protist 
traits database.

An important step in building a protist trait database is compiling informative functional traits 
(Box 1, Table S1 in the supplemental information online). Substantial progress has been made 
in this regard, with various works proposing key traits that best capture protist functional diversity 
across different biomes [14,48,63]. For a protist-wide trait database, we advocate for an inclusive 
approach that incorporates a wide range of traits. While not all traits and modalities are broadly 
applicable – for example, benthic versus planktonic habitat is relevant for aquatic protists, but 
not for soil protists – our approach provides a route to broader compatibility and reusability, main-
taining the option of filtering traits based on taxonomic or ecological context. Equally important is 
the inclusion of both qualitative and quantitative traits, as these usually complement each other (e. 
g., type of prey and grazing rates). We recommend that quantitative traits are recorded as con-
tinuous measurements rather than categorical, as continuous data can always be binned post-
hoc, whereas fixed categories may limit reuse. 

Selecting traits that are both important and commonly measured for protist species requires 
balancing data availability with biological relevance. For example, physiological rates (such as
Trends in Microbiology, Month 2025, Vol. xx, No. xx 5



Trends in Microbiology
OPEN ACCESS

Common units and 
trait values 

Literature Microscopy 
images 

Existing clade-
specific databases 

Impute missing data 

Develop protist 
traits ontology 

Standardized 
definitions 

Extract species-level 
trait data from various 
sources (with optional 
AI-assisted automation) 

Protist traits 
database 

Integrate with 
existing databases 

Update and 
maintain database 

Studies on 
protist behaviour, 
morphology, 
physiology, 
interactions Interactions identified by 

sequencing, imaging, 
co-cultures etc 

Taxonomic 
description of 

species 

Imaging to 
determine nutrient 

uptake etc. 

Protist functional diversity 

Morphology 

Cell size 

Cell cover 

No cover 

Theca 

Scales 

Skeleton 

Organic 

Calcareous 

Siliceous 

Strontium sulfate 

Term name 

Definition 

Theca 

Presence of a sheath or cover around the cell. 
Synonyms include “test”, “shell”, and “lorica”. 

Derivation 

(A)

(B)

TrendsTrends inin MicrobiologyMicrobiology 

Figure 2. Roadmap towards a 
trait-based approach for protists. 
(A) A schematic outlining the key steps 
for developing a comprehensive 
traits database for protists across all 
ecosystems, which in turn will lead to 
more studies on protist morphology, 
physiology, and behavior. (B) An 
illustration of a potential structure for 
the protist traits ontology, using the 
trait 'Theca' as an example. Each term 
in the ontology has a standardized 
definition and relevant synonyms. In 
this example, 'Theca' is categorized 
under the parent terms 'Cell cover' 
and 'Morphology'. Theca includes 
the following modalities based on 
composition: 'Organic', 'Calcareous', 
'Siliceous', and 'Strontium sulfate'. 
Additional traits under the parent term 
'Morphology' could include 
'Cell shape', 'Symmetry', 'Polarity', 
'Presence of defense protrusions', etc. 
(see Table S1 in the supplemental 
information online).
rates of growth, resource uptake, photosynthesis or grazing) are highly informative about species’ 
ecological fitness and their contribution to ecosystem processes [61]. However, these difficult-to-
measure traits (often referred to as 'hard' traits in trait literature) require culturing and/or experi-
mentation, and are therefore recorded for only a relatively small fraction of protist species. In con-
trast, 'soft' traits such as cell size, motility or presence of chloroplasts are more readily inferred 
from species descriptions and, while their ecological relevance is less direct, they can be anno-
tated for a much broader range of taxa and often serve as useful proxies of function (e.g., cell 
size may correlate with prey size) [64]. Annotating both hard and soft traits is thus not only nec-
essary, but also complementary, and will support a wide range of inquiries. Advancing the anno-
tation of hard traits will help to refine our understanding of biological rules and trade-offs, and help 
mechanistically link protist species to ecosystem functioning. For example, compiling data on 
maximum growth rates can provide modelers with empirical values for different functional groups
6 Trends in Microbiology, Month 2025, Vol. xx, No. xx
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Outstanding questions 
How is protist functional diversity 
distributed across space and time? 

How is functional diversity related to 
species diversity and phylogenetic 
diversity? And how much functional 
redundancy exists in protist 
communities across biomes? 

What is the contribution of rare taxa to 
functional diversity? 

Which functional traits show the 
strongest relationships to 
environmental gradients? 

Can the relationship between protist 
functional traits, diversity, and 
redundancy explain ecosystem 
resistance and resilience – and how 
can this be applied to identify at-risk bi-
omes and guide conservation and res-
toration efforts under environmental 
change? 

How do ecological interactions shape 
the coevolution of functional traits? 

What  is  the  tempo  and  mode  of  
evolution of key functional traits? Did 
the emergence of these traits, or 
combination of them, coincide with 
major geobiological transitions or 
shifts in ocean/atmosphere chemistry?

How  do  traits  impacting  dispersal  
ability, such as body size and ability to 
enter dormancy, impact diversification
rates?
(such as diatoms and mixotrophs), enabling more accurate simulations of carbon flow, nutrient 
cycling, and ecosystem response to environmental change [65]. At the same time, expanding 
the annotation of soft traits will allow large-scale evolutionary and ecological studies across 
taxa and biomes. For example, compiling data on cell size can enable investigations of how 
size variation within taxonomic groups correlates with environmental gradients such as tempera-
ture and nutrient concentrations. 

An extensive body of literature can be leveraged to populate a unified trait database at the species 
level – the most basic taxonomic unit. Although manually extracting and harmonizing data from 
scattered sources can be laborious and time-consuming, clade-specific databases show that 
such efforts are both valuable and feasible. Emerging machine learning techniques present an ex-
citing opportunity to accelerate and scale up the process. Indeed, this approach has successfully 
been applied for collecting arthropod and plant trait data [66,67]. Machine learning techniques 
can also be used to extract species trait data from images (e.g., cell size, photosynthetic ability, 
presence of structures involved in nutrition), as recently demonstrated for marine plankton [68]. 
Extracted information should be reviewed by experts for quality control to ensure accuracy and 
reliability of the database. Additionally, newly available tools for building trait databases can be 
used to streamline the process of harmonizing trait data from heterogeneous sources based 
on an underlying ontology [69]. Another challenge will be to account for trait polymorphism within 
species (e.g., across life cycles). Previous approaches have focused either on the trophic phase 
of protist species or on their dominant life-cycle stage. Fuzzy-coding, which enables annotation of 
multiple modalities within one categorical trait, represents a promising path forward once a com-
prehensive trait ontology is developed [70]. The annotation can be done – either in a binary fash-
ion (e.g., a species has both an attached and swimming phases) or quantitatively based on 
proportion of lifespan (e.g., 70% swimming, 30% attached) [70]. Finally, while a key challenge 
in any database is the presence of unavailable or incomplete records, missing values will eventu-
ally be filled in as more data becomes available or may be imputed depending on the degree of 
phylogenetic conservatism in the trait of interest [71,72]. 

All the steps outlined above – developing a protist-wide trait ontology, mining data to populate a 
trait database, and managing missing values – are realistically feasible in the near future with 
existing resources and coordination. Ongoing community-driven initiatives that have successfully 
developed and maintained a taxonomic framework and integrated sequence databases for pro-
tists can be leveraged to support a parallel trait database. Developing and maintaining this trait 
database could adopt the model used for the PR2 (Protist Ribosomal Reference) database: re-
searchers update their clades of expertise with the process being facilitated by workshops 
[73,74]. Furthermore, to ensure longevity and broad usability, we recommend incorporating 
trait databases into established taxonomic databases such as PR2 and WoRMs, which are widely 
used by the protist community and regularly updated [74,75]. 

Concluding remarks and future perspectives 
We have accumulated more than two centuries of biological knowledge on protist species from all 
biomes, and we are now poised to integrate this information in ways that can transform our un-
derstanding of their functional roles in ecosystems. To reach this goal, we must systematically or-
ganize, standardize, and synthesize existing trait data into an accessible and interoperable 
database. We outlined a roadmap that includes: (i) building a standardized ontology of protist 
traits and modalities, (ii) building a trait database following this ontology, and (iii) integrating this 
database into the larger framework of tools routinely used in protistology. While this represents 
a  significant effort, its perspectives extend far into questions on protists’ evolution, ecology, 
and the future of ecosystem functioning across Earth (see Outstanding questi ons).
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Trends in Microbiology
OPEN ACCESS
A unified trait database for protists would represent a transformative resource to study their func-
tional diversity and to advance ecological insights. For example, by complementing environmen-
tal sequencing data with trait information, we will be able to test longstanding questions about the 
extent of functional trait redundancy in ecosystems, the roles of rare taxa, responses to environ-
mental and climate changes, and how specific protist traits relate to ecosystem processes 
[76,77]. A protist trait database would also open up new avenues for macroevolutionary analyses 
across the eukaryotic tree of life. It would enable investigations into the evolutionary history of key 
traits, the degree of phylogenetic conservatism, the tempo and mode of trait evolution across 
diverse protist lineages, and their links to diversification rates [78,79]. These are examples of 
questions that remain largely unexplored for protists, and mapping functional traits to dense phy-
logenetic trees will allow addressing them. A trait database would also be invaluable for refining 
ecosystem and climate models that, at best, incorporate protists as broad functional groups. A 
trait database can thus help create more realistic predictive models by providing the experimental 
data needed for validating outputs and refining theoretical predictions [60,80]. By facilitating the 
integration of sequencing, experimentation, and modelling, a comprehensive protist trait 
database will lay the foundation for a new era of hypothesis-driven research on protist functional 
ecology and evolution. Finally, a unified protist trait database holds significant educational poten-
tial by enhancing cross-disciplinary communication and engaging stakeholders and the public 
with the remarkable diversity of microbial eukaryotes. 
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