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Abstract. The smallest marine phytoplankton, collectively termed picophytoplankton, have been routinely
enumerated by flow cytometry since the late 1980s during cruises throughout most of the world ocean. We
compiled a database of 40 946 data points, with separate abundance entries forProchlorococcus, Synechococ-
cusand picoeukaryotes. We use average conversion factors for each of the three groups to convert the abun-
dance data to carbon biomass. After gridding with 1◦ spacing, the database covers 2.4 % of the ocean surface
area, with the best data coverage in the North Atlantic, the South Pacific and North Indian basins, and at
least some data in all other basins. The average picophytoplankton biomass is 12±22µg C l−1 or 1.9 g C m−2.
We estimate a total global picophytoplankton biomass of 0.53–1.32 Pg C (17–39 %Prochlorococcus, 12–15 %
Synechococcusand 49–69 % picoeukaryotes), with an intermediate/best estimate of 0.74 Pg C. Future efforts in
this area of research should focus on reporting calibrated cell size and collecting data in undersampled regions.
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1 Introduction

Picophytoplankton are usually defined as phytoplankton less
than 2 or 3µm diameter (e.g. Sieburth et al., 1978; Takahashi
and Hori, 1984; Vaulot et al., 2008). They are the smallest
class of phytoplankton and are composed of both prokary-
otes and eukaryotes. The eukaryotes (0.8–3µm) are a taxo-
nomically diverse group that includes representatives from
four algal phyla: the Chlorophyta, Haptophyta, Cryptophyta
and Heterokontophyta (Vaulot et al., 2008). The prokaryotes
belong to the phylum cyanobacteria and are subdivided into
the generaProchlorococcus(∼0.6µm) andSynechococcus
(∼1µm), with each group having many ecotypes that domi-
nate in different ocean regions (Johnson et al., 2006).

Picophytoplankton tend to dominate the phytoplankton
biomass under oligotrophic conditions such as in the sub-
tropical gyres (Alvain et al., 2005), where their high surface-
to-volume ratio makes them the best competitors for low nu-
trient concentrations (Raven, 1998). The abundance of the
prokaryotes is often inversely related with the eukaryotes,
which are favoured by more physically active mixed layers
(e.g. Boumann et al., 2011). Furthermore, with warming of
the temperate to subpolar North Atlantic and the Canadian
high Arctic, picophytoplankton (specifically picoeukaryotes)
have been found to become an increasingly large fraction of
the total chlorophyll (Li et al., 2009; Moran et al., 2010).

As part of the marine ecology data synthesis effort
(MAREDAT, this special issue), we compiled a database on
picophytoplankton in the global ocean. MAREDAT is a com-
munity effort to synthesise abundance and carbon biomass
data for the major lower trophic level taxonomic groups in
the marine ecosystem. It addresses both autotrophs and het-
erotrophs and covers the size range from bacteria to macro-
zooplankton.

2 Data

We compiled data for picophytoplankton abundance in three
taxonomic groups:Prochlorococcus, Synechococcus, and
picoeukaryotes (Table 1). We used the size range of pi-
coeukaryotes as defined by the contributing researchers.
The size range has a large impact on the resulting biomass
(see Discussion). All of the data were obtained by flow
cytometry. Both the raw data and the gridded data are
available from PANGAEA (http://doi.pangaea.de/10.1594/
PANGAEA.777385) and the MAREDAT webpage (http://
maremip.uea.ac.uk/.maredat.html).

2.1 Conversion factors

Conversion factors from cell abundance to carbon biomass
for the three picophytoplankton groups were compiled from
the literature (Table 2). Conversion factors were either mea-
sured directly on unialgal cultures in the laboratory or de-
rived from indirect methods on in situ samples. Most of the

Figure 1. Horizontal distribution of the number of observations.
Data points have been enlarged to 5◦ ×5◦.

indirect measures were derived from cell sizes that were esti-
mated from average forward-angle light scatter (FALS) mul-
tiplied by a carbon content per biovolume. The conversion
factors of Veldhuis et al. (1997) were based on nitrate up-
take in incubated in situ samples and assuming a C : N ratio
of 6. Since the biggest source of variability in the other in-
direct measures is the carbon content per biovolume, which
was measured on laboratory cultures, the advantage of us-
ing in situ biovolume to determine conversion factors does
not seem to improve the local applicability of these data, and
we therefore used the directly measured conversion factors
as the standard.

2.2 Quality control

Contributed data were assumed to have undergone the con-
tributing researchers’ own internal quality control proce-
dures. As a statistical filter for outliers, we applied the Chau-
venet criterion (Buitenhuis et al., 2012b) to the total carbon
data. The data were not normally distributed, so we log-
transformed them, excluding zero values. No high outliers
were found by this criterion. The highest picophytoplankton
biomass in the database is 575µg C l−1, measured near the
coast of Oman (Indian Ocean).

3 Results

The database contains 40 946 data points (Fig. 1). Data are
included from a number of stations that have been sampled
repeatedly over many years or programs where measure-
ments have been made on a fine-resolution grid. Therefore,
after gridding, we obtained 10 747 data points on the World
Ocean Atlas grid (1◦ ×1◦ ×33 vertical layers×12 months),
representing a coverage of vertically integrated and annually
averaged biomass for 2.4 % of the ocean surface. For further
details on the gridding, see Buitenhuis et al. (2012b). To limit
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Table 1. Data sources.

Cruise Date Area Reference/Investigator

Li87022 Jun 1987 North Atlantic Li and Wood (1988); Li et al. (1992)
CHLOMAX Sep–Oct 1987 Sargasso Sea Neveux et al. (1989)
Endeavour177 May–Jun 1988 Sargasso Sea Olson et al. (1990)
Li88026 Sep 1988 North Atlantic Li et al. (1992)
Bermuda 1988–1989 Sargasso Sea Olson et al. (1990)
EROSDISCO89 Jan 1989 Mediterranean Sea Vaulot et al. (1990)
Li89003 Apr 1989 North Atlantic Li et al. (1992)
Oceanus206 May 1989 Sargasso Sea Olson et al. (1990)
EROSBAN Jul 1989 Mediterranean Sea Partensky (unpublished data)
NIOZNatl89 Aug–Sep 1989 North Atlantic Veldhuis and Kraay (1990); Veldhuis et al. (1993)
Palau Aug–Sep 1990 Tropical Pacific West Shimada et al. (1993)
NOPACCS Aug–Oct 1990 Pacific Ocean Ishizaka (unpublished data)
Australia Nov–Dec 1990 Tropical Pacific West Shimada et al. (1993)
HOT 1990–2008 Tropical Pacific Campbell et al. (1997); Karl (unpublished data)
BATS 1990–2010 North Atlantic DuRand et al. (2001); Lomas et al. (2010)
Iselin 9102 Feb 1991 Carribean Sea McManus and Dawson (1994)
Li91001 Apr 1991 North Atlantic Li (unpublished data)
BOFS Jul 1991 North Atlantic BODC (British Oceanographic Data Centre)
POEM91 Oct 1991 Mediterranean Sea Li et al. (1993)
EUMELI3 Oct 1991 Tropical Atlantic Partensky et al. (1996)
EQPACTT007 Feb–Mar 1992 Equatorial Pacific Landry et al. (1996)
Eddy92 Mar 1992 Mediterranean Sea Yacobi et al. (1995)
EROSVALD Mar 1992 Mediterranean Sea Vaulot, Marie (unpublished data)
EQPACTT008 Mar–Apr 1992 Equatorial Pacific Binder et al. (1996)
EQPACTT008D Mar–Apr 1992 Equatorial Pacific DuRand and Olson (1996)
NIOZIndian May 1992–Feb 1993 Indian Ocean/Red Sea Veldhuis and Kraay (1993)
SurugaBay May 1992–Oct 1993 Japan Shimada et al. (1995)
EUMELI4 Jun 1992 Tropical Atlantic Partensky et al. (1996)
Surtropac17 Aug 1992 Equatorial Pacific Blanchot and Rodier (1996)
EQPACTT011 Aug–Sep 1992 Equatorial Pacific Landry et al. (1996)
Li92037 Sep 1992 North Atlantic Li (1994, 1995)
EQPACTT012 Sep–Oct 1992 Equatorial Pacific DuRand and Olson (1996)
EUMELI5 Dec 1992 Tropical Atlantic Partensky et al. (1996)
Aquaba 1992–1993 Red Sea Lindell and Post (1995)
Malaga93 Jan 1993 Mediterranean Sea Garcia et al. (1994)
Li93002 May 1993 North Atlantic Li (1994, 1995)
EROSDISCO93 Jul 1993 Mediterranean Sea Simon, Barlow, Marie (unpublished data)
NOAA93 Jul–Aug 1993 North Atlantic Buck et al. (1996)
Flupac Sep–Oct 1994 Equatorial Pacific Blanchot et al. (2001)
OLIPAC Nov 1994 Equatorial Pacific Neveux et al. (1999)
ArabianTTN043 Jan 1995 Arabian Sea Campbell et al. (1998)
ArabianTTN045 Mar–Apr 1995 Arabian Sea Campbell et al. (1998)
Delaware95 Apr 1995 North Atlantic Li (1997)
MINOS Jun 1995 Mediterranean Sea Vaulot, Marie, Partensky (unpublished data)
Chile95 Jun 1995 South Pacific Li (unpublished data)
Lopez96 Jun 1995 Sargasso Sea Li (unpublished data)
Li95016 Jul 1995 North Atlantic Li and Harrison (2001)
Ictio-Alborán Cadiz 95 Jul 1995 North Atlantic Echevarrı́a et al. (2009)
ArabianTTN049 Jul–Aug 1995 Arabian Sea Olson (unpublished data)
ArabianTTN050 Aug–Sep 1995 Arabian Sea Campbell et al. (1998)
NOAA95 Sep–Oct 1995 Indian Ocean Buck (unpublished data)
ArabianTTN053 Nov 1995 Arabian Sea Olson (unpublished data)
ArabianTTN054 Dec 1995 Arabian Sea Campbell et al. (1998)
AZOMP 1995–2009 North Atlantic Li (2002, 2009); Li et al. (2009)
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Table 1. Continued.

Cruise Date Area Reference/Investigator

OMEX/D1221 Jun 1996 North Atlantic BODC
AZMP 1997–2009 North Atlantic Li (2002, 2009); Li et al. (2009)
Kiwi6 Oct–Nov 1997 Antarctica Landry (unpublished data)
Kiwi7 Dec 1997 Antarctica Landry (unpublished data)
Almo-1 Dec 1997 Mediterranean Sea Jacquet, Marie (unpublished data)
AESOPS/NBP97-1 1997 Ross Sea Olson, Sosik (unpublished data)
Almo-2 Jan 1998 Mediterranean Sea Jacquet et al. (2010)
Kiwi8 Jan–Feb 1998 Antarctica Landry (unpublished data)
Kiwi9 Feb–Mar 1998 Antarctica Landry (unpublished data)
Southwest Pacific Mar–Apr 1998 South Pacific Campbell et al. (2005)
PROSOPE99 Sept 1999 Mediterranean Sea Marie et al. (2006)
GLOBEC LTOP Mar 2001–Sep 2003 North Pacific Sherr et al. (2005)
JOIS 2002–2009 North Atlantic, Arctic Li (2002, 2009); Li et al. (2009)
NP Feb 2004–Mar 2005 North Atlantic Lomas et al. (2009)
BIOSOPE Oct–Dec 2004 South East Pacific Grob et al. (2007)
ArcticNet2005 Aug–Sep 2005 Arctic, North Atlantic Tremblay et al. (2009)
DOP May 2006–May 2008 North Atlantic Lomas (unpublished data)
C3O 2007–2008 North Atlantic, Arctic Li (2002, 2009); Li et al. (2009)
Bering Sea Mar 2008–May 2010 North Pacific Moran et al. (2012)
Line P Aug 2010–Jun 2011 North Pacific Lomas (unpublished data)
FOODWEB Feb–Aug 2011 North Atlantic Lomas (unpublished data)

Table 2. Cell abundance to carbon biomass conversion factors [fg C cell−1].

Prochlorococcus Synechococcuspicoeukaryotes reference

Direct, from
cultures

250 Kana and Glibert (1987)

600 3800±100 Verity et al. (1992)

800, 1360 Montagnes et al. (1994)

49±9 Cailliau et al. (1996)

350 (200–500) Liu et al. (1999)

4400 Llewellyn and Gibb (2000)

27±6 Claustre et al. (2002)

53±9 170±65 Bertilsson et al. (2003)

16±1 249±21 Fu et al. (2007)

average 36 255∗ 2590

Indirect, mostly
from culture C
per volume× in
situ volume

92 175 Veldhuis et al. (1997)

53 246 2108 Campbell et al. (1994)

56 112 DuRand et al. (2001)

39±1 82±8 530±185 Worden et al. (2004)

average 60 154 1319

∗ Excluding Verity et al. (1992), 324 fg C cell−1 including Verity et al. (1992).
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Figure 2. Number of grid points with data, as a function of(A) lati-
tude.(B) Depth. Observations below 300 m are not shown (1.4 % of
the data). The deepest observation is at 3000 m and the deepest non-
zero observation at 1100 m.(C) Time. Red: Southern Hemisphere,
black: total.

the overrepresentation of well sampled locations, we present
results of the gridded data. Only 15 % of the data are from
the Southern Hemisphere (Fig. 2a), 33 % are from the trop-
ics (43 % of the ocean surface), while 13 % are from the polar
oceans (5 % of the ocean surface). Observations in the upper
112.5 m make up 81 % of the data (Fig. 2b), but the number
of observations decreases more slowly than biomass (Fig. 3),
and there are still 480 observations at 200 m depth (Fig. 2b),
thus defining the vertical biomass profile fairly well. Zero
values make up 1.6 % of the data, and 95 % of those are from
below 62.5 m depth. There is some sampling bias towards the
growing season, with 67 % of the data sampled in the spring
and summer months (Fig. 2c).

The average picophytoplankton biomass is
12±22µg C l−1 (Fig. 4) or 1.9 g C m−2. Of the verti-
cally integrated biomass, 54 % occurs in the upper 40 m and
93 % in the upper 112.5 m (Fig. 2).Synechococcusis found
at the most shallow depths (97 % above 112.5 m, Fig. 5),
followed by picoeukaryotes (92 % above 112.5 m), while
Prochlorococcusbiomass decreases more slowly with depth
(87 % above 112.5 m).

The average biomass is slightly higher in the trop-
ics and considerably lower in the Arctic (Figs. 4, 6),
but the standard deviation within latitudinal bands is
high, so that none of the differences are significant.
Antarctica: 11±8µg C l−1 or 1.2 g C m−2, south temper-
ate zone (67–23◦ S): 13±23µg C l−1 or 2.2 g C m−2, trop-
ics: 15±24µg C l−1 or 2.2 g C m−2, north temperate zone:
12±22µg C l−1 or 1.9 g C m−2, and Arctic: 6±8µg C l−1

or 0.6 g C m−2. We calculate the global picophytoplankton
biomass from the zonal and time-averaged concentration
filled by interpolation across up to 22◦ latitude (Fig. 6) mul-
tiplied by the volume at each latitude and depth, integrating
to the bottom and counting missing values as 0. We thus esti-
mate a total global picophytoplankton biomass of 0.74 Pg C
(17 % Prochlorococcus, 15 % Synechococcusand 69 % pi-
coeukaryotes). Interpolation across up to 10◦ latitude only
leaves a few missing values and estimates 0.73 Pg C. If we
use the indirect in situ conversion factors for each of the three
groups (Table 2), the total biomass (with up to 22◦ interpola-
tion) is 0.53 Pg C (39 %Prochlorococcus, 12 %Synechococ-
cus, 49 % picoeukaryotes).

Figure 3. Average picophytoplankton biomass [µg C l−1] as a func-
tion of depth [m].

Picoeukaryotes tend to dominate by>75 % poleward of
40◦, and dominate below 62.5 m depth in the tropics and
below 225 m everywhere (Fig. 7).Prochlorococcustends to
dominate above 225 m between 20–40◦ N and shares domi-
nance with picoeukaryotes between 10–30◦ S and at the sur-
face in the tropics.Synechococcusonly dominates around
50◦ S and is relatively abundant above 62.5 m between 10–
40◦ N. This is consistent with the community structure of
picophytoplankton that has been analysed by Bouman et
al. (2011).

4 Discussion

Although data coverage, at 2.4 % of the ocean surface, is
by no means complete, if we randomly select half of the
depth profiles in 10 random samples, the average integrated
biomass varies between 96 and 104 % of the value for the
whole dataset, while the averages from the Southern and
Northern Hemispheres are 119 % and 96 %, respectively. On
the other hand, the average using the indirect in situ conver-
sion factors is 72 % of the value estimated using the direct
conversion factors. Thus, the main uncertainty in determin-
ing the global picophytoplankton biomass in this analysis is
the conversion from cell abundance to carbon biomass. There
is a fairly tight relationship between forward-angle light scat-
ter (FALS; Cavender-Bares et al., 2001; DuRand et al., 2002)
or right-angle light scatter (RALS; Simon et al., 1994; Wor-
den et al., 2004), as measured by flow cytometry, and cell
size, which is probably the main source of uncertainty in the
conversion factor. Only about a third of our data came with
FALS or RALS data, and even in those cases these were in
arbitrary units. We recommend the routine measurement of
calibrated size as the additional measurement that would do
most to improve our knowledge of global picophytoplankton
biomass distribution.
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Figure 4. Picophytoplankton biomass [µg C l−1]. (A) 0–40 m,
(B) 40–112.5 m,(C) 112.5–225 m.

Figure 5. Average depth profiles ofProchlorococcus(black),Syne-
chococcus(red) and picoeukaryotes (green) biomass [µg C l−1].

In addition to the uncertainty in the carbon conversion fac-
tor, there is uncertainty about the abundance ofProchloro-
coccusin near-surface oligotrophic waters, where the cellu-
lar chlorophyll content, and thus the ability to detect them as
algae from their red fluorescence, is at its minimum and near

Figure 6. Zonal and time-averaged biomass [µg C l−1] of
(A) Prochlorococcus, (B) Synechococcus, (C) picoeukaryotes. Data
have been filled by latitudinal interpolation of up to 22◦.

the detection limit of standard flow cytometers (Dusenberry
and Frankel, 1994).

It has been repeatedly shown thatProchlorococcusand
Synechococcusincrease in cell size with depth up to∼150 m.
In contrast, previously published results for picoeukaryotes
showed little variation in size as a function of depth (Li et
al., 1993; DuRand et al., 2001; Grob et al., 2007). We com-
pared the increase in size for the three groups at two loca-
tions. At BATS (Bermuda Atlantic Timeseries Station; which
includes the data of DuRand et al., 2001), we also find an
increase in cell size ofProchlorococcusand Synechococ-
cusbut not picoeukaryotes (Fig. 8a). However, in the West-
ern Mediterranean (Almo-1 and -2, Jacquet et al., 2010), we
find a similar increase in cell size ofProchlorococcusand
Synechococcus, but a much larger increase of picoeukaryotes
(Fig. 8b). The difference this could make to the global pico-
phytoplankton biomass is large. If we use the standard con-
version factors in the surface and increase these linearly up
to a factor 3 below 150 m depth (blue lines in Fig. 8), then the
global biomass becomes 1.32 Pg C (+78 %), or if we only ap-
ply this increasing conversion factor toProchlorococcusand
Synechococcus, we estimate a global biomass of 0.93 Pg C
(+25 %). Our standard conversion factors are taken from lab-
oratory studies. Conversion factors for heterotrophic bacteria
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Figure 7. Zonal and time-averaged fraction of total picophyto-
plankton(A) Prochlorococcus, (B) Synechococcus, (C) picoeukary-
otes.

from laboratory studies tend to be higher than from in situ
measurements (Buitenhuis et al., 2012a). Indeed, even if we
do not account for an increase of cell size with depth, the
laboratory conversion factors lead to a higher biomass esti-
mate than the indirect conversion factors. Other sources of
variability are seasonal variations of cell size (DuRand et al.,
2001) of all picophytoplankton and increasing cell size of
Prochlorococcuswith latitude towards the equator (Viviani
et al., 2011). Thus, it is clear that there is considerable uncer-
tainty in the conversion factors, but in the absence of general
trends for the cell size variability of each group under all con-
ditions, our estimate of 0.74 Pg C represents our best estimate
of the global picophytoplankton biomass.

Le Qúeŕe et al. (2005) estimated that the global picophy-
toplankton biomass, including nitrogen fixers, is 0.28 Pg C.
Our estimate, excluding nitrogen fixers, is considerably
higher at 0.74 Pg C, and even our estimate using the indi-
rect conversion factors is still almost double at 0.53 Pg C. Le
Quéŕe et al. (2005) suggested that a third of global phyto-
plankton biomass is in the pico size class. Therefore, a 2–3-
fold difference in the estimated picophytoplankton biomass
would not only be important for calculating the relative con-
tribution that picophytoplankton make to the phytoplankton

Figure 8. Cell size as a function of depth, normalised to cell size at
the surface, (black)Prochlorococcus, (red)Synechococcus, (green)
picoeukaryotes, (blue) exploratory conversion factor that increases
up to a factor 3 below 150 m depth.(A) At BATS, (B) in the Western
Mediterranean (Almo-1 and -2).

but also for calculating the total biomass of phytoplankton as
the base of the ocean ecosystem.

For picoeukaryotes, the definition of the size range to be
included is a major source of ambiguity. Whether phyto-
plankton between 2 and 3µm diameter are included as pi-
cophytoplankton not only affects the abundance of the pi-
coeukaryotes, but also which conversion factor is applicable.
Here, we have included measurements of cells up to 3µm di-
ameter in the carbon conversion factor (Table 2). As a conse-
quence, our conclusion that picoeukaryotes constitute 69 %
of global picophytoplankton biomass critically depends on
the definition of the size cut-off.

In summary, thanks to the routine use of flow cytometry
for measurement of picophytoplankton abundance, we ob-
tained a global dataset with reasonable coverage. The two
main issues that deserve future attention are better resolution
of cell sizes and better sampling coverage in the Southern
Hemisphere.
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